NAVAL POSTGRADUATE SCHOOL
Monterey, California

TOWARDSAN INTEROPERABILITY ONTOLOGY FOR
SOFTWARE DEVELOPMENT TOOLS
by

Neji Hasni

March 2003
Thesis Advisor: Shing Man-Tak
Thesis Co-Advisor: Joseph Puett
Second Reader: Richard Riehle

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the
time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burde n estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington
DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 2003 Master's Thesis

4. TITLE AND SUBTITLE: Towards an Interoperability Ontology for |5. FUNDING NUMBERS
Software Development Tools

6. AUTHOR(S) Neji Hasni

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey, CA 93943-5000

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)

The automation of software development has long been a goal of software engineering to increase efficiency
of the development effort and improve the software product. This efficiency (high productivity with less software
faults) results from best practices in building, managing and testing software projects via the use of these automated
tools and processes. However, each software development tool has its own characteristics, semantics, objects, and
concepts. While there have been significant results achieved by use of automated software development tools (coming
mainly from the widespread increase of customers' adoption of these tools), there remains many challenging obstacles:
lack of communication between the different software development tools, poor shared understanding; use of di fferent
syntax and concepts between tools, limits in interoperability between tools, absence of a unifying conceptual models
and ideas between tools, and redundant work and cross purposes between tools.

The approach undertaken in this thesis to overcome th ese obstacles was to construct a “pilot” ontology that is
extensible. We applied the Feature-Oriented Domain Analysis approach to capture the commonalities between two
software development tools (Rational Software Corporation's RequisitePro, a main-stream, complex, commercial tool),
and a software prototyping tool (the Software Engineering Automation tool (SEATools), a research model with tool
support for developing executable software prototypes) and developed an ontology for the software development tool s
using the Protégé-2000 System. The ontology expressed in UML, promotes interoperability and enhanced
communication.

14. SUBJECT TERMS 15. NUMBER OF
Software Engineering, Computer Science, Management, Ontologies PAGES
271
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

TOWARDSAN INTEROPERABILITY ONTOLOGY FOR SOFTWARE
DEVELOPMENT TOOLS

Neji Hasni
Lieutenant, Tunisian Navy
B.S., Tunisian Naval Academy, 1989
Diploéme d Etude Approfondi, Tunisian Naval Academy, 1995

Submitted in partia fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2003

Author: Nei Hasni
Approved by: Shing Man-Tak
Thesis Advisor

Joseph Puett
Thesis Co-Advisor

Richard Riehle
Second Reader

Peter Denning
Chairman, Department of Computer Science

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

The automation of software development has long been a goal of software
engineering to increase efficiency of the development effort and improve the software
product. This efficiency (high productivity with less software faults) results from best
practices in building, managing and testing software projects via the use of these
automated tools and processes. However, each software development tool has its own
characterigtics, semantics, objects, and concepts. While there have been significant
results achieved by use of automated software development tools (coming mainly from
the widespread increase of customers adoption of these tools), there remains many
challenging obstacles. lack of communication between the different software
development tools, poor shared understanding; use of different syntax and concepts
between tools, limits in interoperability between tools, absence of a unifying conceptual
models and ideas between tools, and redundant work and cross purposes between tools.

The approach undertaken in this thesis to overcome these obstacles was to
congtruct a “pilot” ontology that is extensible. We applied the Feature-Oriented Domain
Analysis Approach to capture the commonalities between two software development
tools (Rational Software Corporation's RequisitePro, a main-stream, complex,
commercia tool), and a software prototyping tool (the Software Engineering Automation
tool (SEATo0ls), aresearch model with tool support for devel oping executable software
prototypes) and developed an ontology for the software development tools using the
Protégé-2000 system. The ontology, expressed in UML, promotes interoperability and

enhanced communication.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUCTION ...ttt e e eeananee 1
A. MOTIVATION AND PURPO SE OF THE RESEARCH EFFORT......... 1
B. STATEMENT OF THE RESEARCH QUESTIONccccviiiiiiiiiiiiiinnnn. 3
C. CONTRIBUTIONSceiiiiiiitie ittt ettt 3
D. INTRODUCTION TO ONTOLOGIESccooiiiiiiiiiiiiiiiie e 5
E SUMMARY ettt 10
FOUNDATION AND RELATED WORKcocoiiiiiiiiiiiiiiiiiit e 11
A. INTRODUCGCTION. ...ttt e e 11
B. FOUNDATION WORKcotiiiiiiiieiei 11
1. Software Toal Interoperability [PUETO02, 03]ccovvvveiennennnn. 11
a. SUMIMEAIY .. e e 11
b. ConceptsUseful tothe TheSIS........ooeeevviviiiiiii i 12
2. Software Evolution [HARNOOC].........cooviviiiiiiiiiieeeeieeee 12
a. SUMIMEAIY ... e e 12
b. ConceptsUseful tothe TheSIS........ooooeiviveiiiii e, 14

3. Object-Oriented Model for I nter oper ability
(OOMI[YOUNOZ]uuuvurnnnnnnnennneneeeeeeeeennneenrnrnneereneseeeeeeeeeeeees 14
a. SUMMBIY .t et e e e ea e eees 14
b. ConceptsUseful tothe TheSIS.......oooeeevvvviveviiiiee e, 16
4. Ontologies: Principles, Methods and Applications [USCH96]..... 17
a. ST 00]0 7= Y PR 17
b. ConceptsUseful tothe TheSiS......ooooeeevvvveeeviicee e, 20
5 UML asan Ontology Description Language [CRANOL]............. 21
a. ST 00]0 7= Y P 21
b. ConceptsUseful tothe TheSiS......ooooeeevvvvevevicc e, 21
6. Overview of Protégé [PROTOZ]........ccovvveeiiiiiiiii e 22
a. SUMIMAIY ... e e s 22
b. Concepts Useful tothe TheSiS......oooveeevvvveeeiicc e, 25
C. RELATED WORKcoiiiiiiiie 26
1. Domain Ontologiesin Software Engineering[MUSE9S] 26
a. SUMIMATY .. e e 26
b. Concepts Related to the TheSIS....ooooeeevvvveeeiiie e, 27
2. DARPA Agent Markup Language [DAMLOZ]ccovvvvevvvnnnnn. 27
a. SUMIMAIY .. e 27
b. Concepts Related tothe TheSiS.........oeveevveiiieccci i, 28
D. CONCLUSION ...cceiiiiiiieetit ettt e 28
METHODOLOGY ..ottt e s e s s s s snree s e s e s s s nnnnnnes 29
A. INTRODUCTION. ...t e e e e 29
B. RESEARCH METHODcciiiiiiieeeeee e 29
1 Step 1 -- Purpose of the ONntologyceevvvveiiiiiiieeiiiiiiiieeeeee 29

Vil

2. Step 2 -- Feature Modeling.........ueeeiiieiiiiiie e 30

a. Overview of Feature Moddling..........coovvvvvveeiininieeennnnnn, 30
b. Feature MOdEling.......oovvvieeiiii e 33

C. Feature Tree of Selected Software Engineering Tools
(RequisitePro and SEATOOIS)vvuveieeeeeieeeeiiiicee e 34
3. Step 3 — Egtablishing Commonalities............cveeeviieeeeiiiein e, 35
4. SteP 4 —TOOl ONLOIOGIES ... e 35
5. Step 5 - UML Representation of the Domaincccccceeeeennnn.. 36
6. P 6 -- DOCUMENTALION ... e 36
C. CONCLUSION ...ttt ettt 36
IV. ESSENTIAL TOOL CHARACTERISTICS.....uuttiiiiiiiiiieieieieeeeeee e 39
A. INTRODUCTION. ..ottt e s e e e e 39
B. DESCRIPTION OF THE RATIONAL REQUISITEPRO 39
1 RequisitePro Feature ANalySiS........coovvveeiiiiiiiiiiiiii e, 41
2. Key Functions of ReqUISITEPIO......vveiiiiiiiiiiiii e 43
3. Feature Tree of REQUISITEPI Occvvvveeiiiiiiic e 43
4. ONLOlOGY LiS. i e e 45
C. SEATOOLS. ..ttt ettt ettt 49
1 INEFOAUCTION e e 49

2. Description of the Software Engineering Automation Tools
(SEATO0IS) .. .ccieieeeeete ettt e 49
3. Evolution of the SEATOOIS.......eeeiiiiiiiiiiiiiiiiiiiie e 50
4. Summary of Functionalitycccceeveeeiiiiiiiiii e, 53
5. Feature ANAlYSISccovviiiie i e 53
6. SEATO00ISONOIOgY LiSt ..ccevvveiiiiieieieeeeeeeeee e 56
D. COMMON CHARACTERISTI CSOF THE TOOLS.......cvvviiiieeeeeeenn. 61
E CONCLUSION ...ttt ettt 63
V. THE SOFTWARE DEVELOPMENT TOOL ONTOLOGYovvvveiieeeieeeneen. 65
A. INTRODUCGCTION. ...t e e 65
B. OVERVIEW OF UML ...oiiiiiiiiiiiiiii 65
C. UML DESCRIPTION OF REQUISITEPRO ONTOLOGY 66
1. Class Diagram: Applicationccooeeeiiiviiiiiiiiinn i 68
2. ClassDiagram: Packageccuuuuiiiieeeiiiiiiiiiteeeeeeeeeieiinaneeee s 69
3. ClassDiagram: Project Data...........ooeeevvveeiiiiuiiiiee i 70
4, Class Diagram: Project StruCtUre.........ooevvvveeiieiieeeieieeeieeeeeeeee 72
5. Class Diagram: Project SECUrity.........covvvivvvuiiiiiiiieeeeeiiiieeeeeeee 74
6. Class Diagram: Requirements...........ccoovviviiviiiiniiiee e 75
D. UML DESCRIPTION OF THE SEATOOLSONTOLOGY 77
1 The PSDL Package........ccoveiiiiiiiiiii e 79
2. The Graph Editor Packagecoooveeiiiiiiiiiiiiiii e 80
3. The PSDL Builder Package............oooviiiiiiiiiiiiiii e 82
4. The CapsMain Packageeuiiiiieiiiiiiiiiii e 83
E UML DESCRIPTION OF THE HIGH LEVEL ONTOLOGY 85
1. Class Diagram: Artifactoiiiiiiiiii e, 85
2. ClassDiagram: ACLIVItYccuvuuiiiiiiieeiiie e 87

Vil

3. ClassDiagram: ACLOrccovvveviiiiiii e ee e et 88
F. UML DESCRIPTION OF THE INTER-RELATIONSHIPS

BETWEEN THE THREE ONTOLOGIES.........cccciiiiieieiiiieee e 88

1. Class Diagram: COmMmMUNICAtioNcoevvvviviiiiiieeeeeeeiiiieeeeeeeen 89

2. Class Diagram: PrototyPe........eeeeeeiiieeeeieeeeeiiiiaeeeeeaieinineneeeees 20

3. ClassDiagram: Creationceeiiieeeeiiieeeiiinceereeeeiiinen e 91

4. ClassDiagram: ACLOrccoovveeeiiiieie e e 92

5. Class Diagram: Documentation............cceeuvveeiiniieeeesiinnneeeeeen, 93

6. Class Diagram: Requirements...........ccovvvevvvviiiniiieeiiineeeeeeen 9

7. ClassDiagram: Model..........oouviiiiiiiiiiieiii e 96

8. ClassDiagram: SECUNITYceevvvveiieieeeeieeeeeiit e e e e e 97

G. SUMMARY Lttt et 97

VI, CONCLUSIONS ...ttt 99

APPENDIX A. REQUISITEPRO FEATURE TREE ... 105

APPENDIX B. SEATOOLSFEATURE TREE.........c..ooiiiiiiiiiiiiiee e 117
APPENDIX C. CLASS HIERARCHY FOR ONTOLOGY-REQUISITEPRO

O N] = 3 SR 133

APPENDIX D. CLASSHIERARCHY FOR SEATOOLS ONTOLOGY PROJECT 223
APPENDIX E. CLASS HIERARCHY FOR HIGH_LEVEL_ONTOLOGY

PROUJECT .. et e 245
LIST OF REFERENCEScooiiiiii e, 249
INITIAL DISTRIBUTION LIST ..o, 253

THIS PAGE INTENTIONALLY LEFT BLANK

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Fgure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.

LIST OF FIGURES

Software Evolution Processes with CASES [HARN99C].cevvvveeeiiinnns 13
Federation Interoperability Object Model [YOUNOZ].cocvvvvvneeennnn. 15
Middleware Trandator Implementation [YOUNO2].ccoevvvvvrvivnnnnnnnn. 16
Tool Set Architecture [USCHO8].coeeeiiiiieiiicie e 20
Protégé Screen Shot of a Slot Interface with its Different Characteristics. 23
Classes and Related SIOLS.coevvviiiiiiiiiiieiieee e 24
Feature Model of aLighthouse System.ccovvvviiiiiiiiii e, 31
Subset of the RequisitePro Feature Tree.........ccuvvvvieiiiieeiiiiiei e e 44
General Structure of the SEATools Environment [USEROZ]. 51
Iterative Prototyping Process [LUQIO2Z].........cevviieeeiereieiiiii e 52
Subset of the SEATOOIS FERIUIE TTEE. ... 55
Timing Congtraints Subset of the SEATools Feature Treeccoovveeevveveeees 56
Relationship Between the Classes of the Three Ontologies...........cccceeen...... 66
UML Description of RequiSitePro Ontology..........vveeeeerieeeeereeeeiiineeneeennns 68
Class Diagram: AppliCation.couvviiiiiiieeeie e 69
Class Diagram: PaCkage.ceeeviieeieiiiiisie et e e e e e ee e eeees 70
Class Diagram ProjeCt Data.ccevvvvuiiiiiieeeieii e 71
Class Diagram: ProjeCt SITUCIUE.veieeeeiiieeeiiiicie e e e e e 73
Class Diagram: ProjeCt SECUNTY. «....uvueiiieee i ettt e e e eeeees 75
Class Diagram: REQUITEMENES.ccuuvuruiiiieeeeeeeeeeiiiitaeeeeeeiiiiinaeeeeeaeeeeeees 76
UML Description of the SEATOO0IS ONtolOgycuvvveeeiieeeeeiieeiiiiinaeneeenns 78
The PSDL PaCKaQE.... ... o iiiee e e 79
The Graph Editor Package.uuveiiiiiiiiiiii e 81
The PSDL Builder Package.uuuiiiiieiiiiiiiiiiii e 82
The Caps Main Package.coovviiiiiiiiieeee e 84
UML Description of the High Level Ontology.covvveeeiiieiiiiiiiinieeenns 85
Class Diagram AT aCE....... oot e eeeees 86
Class Diagram ACHVITY.ooeeeeeeiee ettt eeeear e eeeees 87
Class Diagram ACKOL.uuiieeeeiei ettt e e e e e e eeabeban e eeeeeees 88
Class Diagram: COmMMUNICALION.uuieieeeeieieeeiiiiieseeesriieeseeeeeeeeeenns 90
Class Diagram: Prototype.ccovvvviuiiiiiie i eee i 91
Class Diagram: Creation.cccevvvevuiuiiiinieieee e is e e e e e e e eeeveai e aees 92
(O S BIF-"s = 0 M AN (o (PPN 93
Class Diagram: DOCUMENALiON.vuveieiieeeeeeeeeciiiceeeevin e e e e eeeeeenns 9
Class Diagram: REQUITEMENES.uvvueeiieieeeeeeeeeeiiiiteeeeeeeriiinnneeeeeaeeeennns 95
Class Diagram: MOEL.ccooiieeiiiiiieie e e e eeeees 96
Class Diagram: SECUNTY......oiiiieeeeeieeeeiiitieee s e et es s e e e e e e e eeeeeseee e enees 97
The Different Levels of the Software Development Tool Features............. 102
ReQUISITEPIO FEBIUNE TTE ... uuuu it e e e e e e 106
High-Level RequisitePro-Subset of the Feature Tree.ccovvvvvvvvvnnnnnn. 107
Project Management RequisitePro Feature Tree’ sSubset.ovvvvennn. 108

Xi

Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.

Teams Management RequisitePro Feature Tree's Subset.ccceeeees 109
Documents Management RequisitePro Feature Tree's Subset. 110
Control Requirements SUBSEL.uvviiiiiiiiiiieee e 111
Control Requirements Subset (CONt).ccevvvvveeviiiiiiiieeeee e eeeeeeeens 112
Report Generation RequisitePro Feature Treg' sSubset.coccvvvvvvennnnn. 113
Treacability RequisitePro Feature Tree€' S SUBSEL.ccevvvvvviiiiiieeccceeen, 114
Treacability RequisitePro Feature Tree's Subset (Cont).covvveeeevvvveennes 115
Non-Functional Features as RequisitePro Feature Tree's Subset. 116
SEATOOIS SFEAUIE TIE.. ..o 118
High-Level SEATo0IS -Subset of the Feature Tree.ooeevvvvveevvevnnnnnn. 119
Manage Prototype Feature Tree'S SUDSEL.coevvvveviiiiiiiie e 120
Develop Systems Feature Tree’ SSUDSEL.coooevviveiiiiiici e 121
Essential Feature Tre€ SSUDSEL. ...ooovvviviiiiiiiiii 122
Very Useful Feature Tree' S SUDSEL.oevevvvviiiiiieeeececeeei e 123
Develop Systems Feature Tree's Subset (Con't.) ...evvvveevinieeeiiieeeiiiiiine 124
Build Prototype Feature Tre€'s SUDSEL.........oooeeiviiiiiiii e, 125
Automatically Generate Code Feature Tree' s SUBSEL.veevevvieeevcinnnnn, 126
Automatically Generate Code Feature Tree's Subset (Cont).cccvvvveeen. 127
Model Editor Feature Tree'S SUDSEL.vvvuiiiieeeiiiieiiiii e 128
User Interface Feature Tree' S SUDSEL.vveeiiii e 129
Prototype Feature Treg' SSUDSEL.oovvviiiiiiiieie e 130
Edit Feature Tree' S SUDSEL.........oooi it 131

Xii

Table 1.
Table 2.
Table 3.
Table 4.

LIST OF TABLES

List of the Terms Defined in the Enterprise Ontology [ENTROZ]. 19
RequisitePro Ontology List.........cooviiiiiiiiiiii e 49
S STAN oo K@ 0110] (oo A I 1= PP 60
Common Characteristics for High-Level Software Development Tools

(@01 0] oo V200 PPN 63

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

ACKNOWLEDGMENTS

This thesis embodies ideas from guided work with instructors. In particular, my
work has been strongly influenced by my advisors: LTC Joseph Puett (U.S. Army) Naval
Postgraduate School, PhD candidate; Professor Man-Tak Shing; and Professor Richard
Riehle. | would like to thank them for their outstanding support and their vauable advice.

| aso owe a large debt to many dedicated professionals, both known and
unknown to me, who had confidence in me and/or provided me with some knowledge in
the field of software engineering either drectly or indirectly and /or contributed their
expertise to the Software engineering field. Dr. Lugi, Dr. Norm Schneidwind, Dr. Bret
Michagl, and Dr. John Osmundson al contributed to my achievement.

Finaly, I would like to thank my wife Ibtissem and my two children (Maha and
Khaled) for their sacrifice (quitting the job for my wife and stopping the Arabic school
for my children) and devoting themselves to my encouragement and support.

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

l. INTRODUCTION

A. MOTIVATION AND PURPOSE OF THE RESEARCH EFFORT

The automation of software development has long been a god of software
engineering to increase efficiency of the development effort and impr ove the software
product. This efficiency (high productivity with less software faults) results from best
practices in building, managing and testing software projects via the use of these
automated tools and processes. However, each software development tool has its own
characteristics, semantics, objects, and concepts. While there have been significant
results achieved by use of automated software development tools (coming mainly from
the widespread increase of customers adoption rate of these tools), there remains many
challenging obstacles:

Lack of communication between the different software development toal,

Poor shared understanding; use of different syntax and concepts between
tool,

Limit of interoperability between tools,
Absence of a unifying conceptual models and ideas between tools,
Redundant work and cross purposes between tools.
These obstacles stem from different contexts, understandings, viewpoints and
assumptions that lead to wasted effort.

One way to overcome some of these obstacles is to establish a unifying contextua
framework for different software engineering tools -- an “ontology” which will unify the
different concepts and ideas in the domain. As such an ontology emerges; people,
organizations, and software systems will communicate with more efficiency. Creating an
ontology actually means determining the set of semantic categories which properly
reflect the particular conceptual organization of the domain of information, on which the
system must operate, thus optimizing the results (quantitatively and quditatively) of the
shared information.

Recently, Young proposed an object-oriented methodology for establishing
interoperability between heterogeneous systems [YOUNO2] that allows interaction

1

between their different objects. This approach is ideal for resolving the differences
existing between different kinds of systems via an establishment of a high level
interoperability model (Federation Interoperability Object Model (FIOM)). The
establishment of such object federation between existing process models together with
the integration of the federation with an extended evolution model, will generate an

availability of inputs and outputs between subordinate models to each other.

The purpose of this research is to begin an investigation to address the problems
mentioned previoudy by identifying and defining the essential characteristics of two
software engineering tools: a Requirement's Engineering Tool (Rational Software
Corporation's Requisite®Pro, a main-stream, complex, commer cial tool), and a software
prototyping tool (the Software Engineering Automation tool (SEATools), a research
model with tool support for developing executable software prototypes). The approach
undertaken was to construct a “pilot” ontology that might be extended in the future to
include other software development tools. The essential idea was to capture the
commonalities between these two tools and express them in such a way that would
promote interoperability and enhanced communication using Young's interoperability
model.

The approach in this portion of the investigation was first to anayze the structure,
inputs, and outputs of the two individual tools, perform a domain analysis (of this subset
of tools) and produce a feature model of that domain. We then used the feature model to
identify the characteristics of each individua software development tool that must be
accounted for within a higher-level ontology. Finally, we sought to build an ontology
capable of providing acommon view of the domain, providing an effective representation
of relations (similarities and differences, interacting via compatible trandation,
transformations) between representations of corresponding concepts in the different
software development tools. This was especially important since the corresponding

concepts of the two tools are not exactly the same, but contain subtle differences.

B. STATEMENT OF THE RESEARCH QUESTION
The research question for thisthesisis as follows:

What is an appropriate methodology for developing a Software
Development Tool Ontology for establishing interoperability between
software development tools?

Note that this research question implies that the methodology used to arrive at the
ontology is as important as the ontology itself. While the ontology will determine
whether the interoperability ontology for the two software development tools (Rational
RequisitePro and Software Engineering Automation tools (SEATools)) is appropriate, the
methodology will also ensure that the ontology can be later extended with the inclusion
of additiona tools.

Before building this ontology, our study will focus on investigating the essential
characteristics of these two software development tools, then building a feature model
representing the essential identif ied characteristics (extracted from the user manuals and
the use of the tool itself) for each tool. Finadly, we distinguish the commonalities
between the two tools to build a high level ontology unifying the framework of
interoperability and trandation of the two tools.

Ontology literature is full of examples of the development of ontologiesin severa
different domains. While software development tools is not one of these domains, the
experiences of these previous researchers (and the methodologies they used to develop
their ontologies) provide a starting place for the development of a methodology that we

can use to develop a software development tool ontology.

C. CONTRIBUTIONS

Developing software engineering design environments that maximize
interoperability, communication and efficiency tailored for particular domains is a
common objective for software engineering stakeholders who seek to improve the
outputs by automating engineering practice around a specific domain. The larger
software development community has embraced the concepts of Product Lines and
Generative Programming techniques. The advantage of developing specific ontologies

3

tailored to the domain of the engineering enterprise provides benefits stemming from
representational efficiency. However, there has not been a lot of work in developing
ontologies tailored to the domain of software development itself. One reason for thisis
the amount of effort required to produce such an ontology is substantial. Specific
ontologies such as this ongoing project are, in fact, not easily buildable, which obliges us
to undertake seemingly heavy processes to identify existing features in both software
engineering tools to satisfy the representational needs. Anidea solution will be offered
by the construction of a general ontology for common features management, which might
allow for resource sharing and artifact porting over and across multiple tools in the
software engineering domain, possibly with an easy and fast process of customization
without having to develop new systems from scratch [LENCO1].

The software engineering contributions represented in this thesis are:

Aninitia investigation and analysis of the structure, inputs, and outputs of
the two individual software development tools, and the identification of
essentia characteristics of these tools.

The completion of a domain analysis (of this subset of tools) and
production of afeature model for each tool’ s characteristics.

An identification of the commonalities between the two software to ols
characterigtics that must be accounted for in building a high level ontology
for the domain.

The congtruction of an initial high-level ontology using a knowledge-
based design and knowledge system developed at Stanford University:
“Protégé 2000".

The establishment of a methodology around which future software
development tools can be analyzed and added to this initia software
development tool ontology.

Ontologies can serve many purposes associated with communication,
interoperability, and systems engineering functions (reusability, specification, etc.)
[USCH96]. The ontology that was generated in this research was influenced by the
future goa and intended use of the ontology. In this case, the intended use was to
establish interoperability between tw o software development tools. These tools were not
chosen arbitrarily. The future purpose of the ontology biases the choice of the particular
set of features that are analyzed. The future purpose biases the organization of the

4

domain of interest by highlighting commonalities and resemblances needed for the given
purpose. For instance, because we started by analyzing the requirement management tool
followed by the computer aided prototyping tool in order to come up with the essential
characteristics that make them interoperate, it is not surprising that the ontology tailored
to this goa appears to be more requirement management oriented than say, “software
testing” oriented. Conversely, the design of ageneral ontology (applicableto all software
engineering tools), while lacking the important guidance represented by application-
driven and tool-driven congtraints, must regard the versdtility of the template or

framework as one of the most important promising achievements [LENCO1].

Our strategy for developing the ontology was based on both a top-down and
bottom-up approach. In order to be effective, we sought to make the top-down approach
tackle the core problem of the interoperability between the software development tools
[SOWAQQ]. The bottom-up approach, focused on developing specific tool ontologies
that accurately described the artifacts produced by the tools so that their data processes
could be actually made to interoperate. A software development tool ontology is a
system of features, selected because of their usefulness to capture interesting
commonalities and similarities between tools. The choice of a proper ontology for the
software development tools was a very important factor in accomplishing the task of
interoperability building and struc turing, far beyond the issue of the representation of the

inventory of the software development tools features.

D. INTRODUCTION TO ONTOLOGIES

The history of the word “ontology” first appeared in philosophy referring to the
subject of “existence’”. The same word adso shares some commonalities with the
“epistemology”, which is about knowledge and knowing. These latter commonalities are
particularly obvious in the context of knowledge sharing, where an ontology is a
description (similar to a formal specification of a program) of the concepts and
relationships that can exist for an entity or a group of entities [GRUBO2]. Corazzon in
his article “descriptive and formal ontology” defines an Ontology as a theory of objects
and their relationships [CORAQ2]. The widespread use of ontologies provides a

5

meaningful practice for distinguishing various types of objects (concrete and abstract,
existent and non-existent, real and ideal, independent and dependent) and their ties
(relations, dependences and predication).

Modern usage of ontology is influenced by a commingled theory developed from
both philosophers and scientists working in Artificial Intelligence, database theory and
natural language processing. [CORAOQZ2] introduces the possibility of distinguishing
ontology as “conceptual analysis’ from ontology as “technology.” Descriptive and
Formal Ontologies present contemporary developments in ontology in both the
philosophical and the technological contexts. This latter kind of ontology will be the
basis of our approach, especialy in trying to develop an ontology alowing
interoperability and communication between different software development tools.

Lenci defines ontologies as a core ingredient in knowledge management and
content-based systems [LENCO1]. Ontologies tasks start from document search and
categorization to information extraction and text mining. Ontologies also represent an
important bridge between knowledge representation and computational lexical semantics.
Ontologies are widely used as formal devices to represent the lexical content of words,
and appear to have a crucia role in different language engineering (LE) tasks, such as
content-based tagging, word sense disambiguation, multilingua transfer, etc. [LENCO1].

Lenci illustrates the example of a top-down ontology, aiming at a universal
coverage of human categories. For instance, Cyc [LENA9Q] forms a huge knowledge
base containing over 100,000 concept types in the domain of universal coverage of
human categories. The example demonstrates the potential advantage of generd
ontologies in that they can represent a common language for systems dealing with

knowledge representation in different domains [LENCO1].
Sowa [SOWAQQ], as quoted by [LENCO1], defines an ontology as:

a catalogue of the type of things that are assumed to exist in a domain of
interest D, from the perspective of a person who uses alanguage L for the
purpose of talking about D.

Furthermore, Lenci emphases the fact that an ontology must include only
instances that belong to the same domain of interest [LENCO1]:
From a semantic point of view, an ontology determines the domain of
discoursefor alanguage L, i.e. what L talksabout. The ontology onwhich
L is interpreted actually constrains the expressiveness of L itself. For
instance, if the ontology only contains plants and animals, then it will be
impossible to speak about computers, unless they are categorized either as
plants or as animals, thereby losing the possibility to account for crucial

differences among them. To be able to do this, the ontology should be
refined by adding a further category, e.g. the one of artifactual objects.

It can be inferred from the previous quote that “Artifact” is an ambiguous term
that can be confusing because it masks a number of unstated assumptions. “Artifact” can
be used to mean a physical object, a primary record, or a physica object that constitutes a
primary record. From the point of view of a researcher, and for the purposes of
developing an interoperability ontology or any other kind of ontology, an artifact can be
defined as an information resource in which the information is recorded on a physica
medium belonging to a certain domain of interest (such as animals and plants), which
may or may not be unique, and in which the type adheres not only in the domain of
interest, but also in the object itself. In other words, artifacts are things that have intrinsic
value, independent of the informational content [LENCO1].

Another view of ontologies [USCH96] defines “Ontology” as a term used to refer
to the shared understanding of some domain of interest. This domain of interest may be
used for the purpose of unifying certain frameworks to solve particular problems in the
same domain. Regardless of the domain of exploration, an ontology should necessarily
include some sort of world view conceived as a set of concepts (such as entities,
relations, and attributes from one side and their definitions and inter -relationships from
another side) with respect to a given domain. Moreover, because people, organizations,
and software systems need to communicate between and among themselves for more
efficiency, there are often difficulties/inaccuracies in communications generated from
differing contexts, understandings, viewpoints and assumptions. One way to solve this
troublesome behavior is by building ontologies that help by:

Improving poor communication,
Establishing a unified environment for conceptual models and ideas,
Preventing redundant work and cross purposes,
Increasing productivity via the ease of understandability,
Providing a widespread use of the domain of interest.
Ontologies are an efficient way to reduce or eliminate conceptual and semantic
confusion. They establish a shared understanding and unifying framework. These latter
have as a main objective the improvements of:

Communication between people with different backgrounds, needs and
viewpoints arising from different contexts. Examples may include:

Normative Models: that establishes the semantics of the system
and potentia extensions,

Networks of Reationships. which explore the relationships
between different entities,

Consistency and Ambiguity: by providing unambiguous and clear
definitions,

Integration of different User Perspectives. by establishing a
groundwork for development of standards within the community.

Interoperability among systems achieved by trandating between different
modeling methods, paradigms, languages, and software tools. Examples
may include:

Integrating environments for tools,

Inter-lingua Trandators. assures a meaningful understanding of a
domain given in different languages,

Internal Interoperability: integration of different systems,

External Interoperability: assures an openness of organizations to
the outside world,

Integrating Ontologies: integrates Domains and Tools.

System engineering ontologies (such as reliability engineering, reuse
engineering) may improve:

Specification: shared understanding assists in establishing the
specifications of systems,

Reliability: can form the basis for manual checking. Forma
ontologies can be used to make assumptions explicit to users.

8

Reusahility: allows modules to be imported and exported between
systems.

Gruber states that the basis of representing knowledge formally accounts in great
part on conceptualization (an abstract, simplified view of the domain of interest to be
represented): the objects, concepts, and other entities that are assumed to exist in a
domain of interest as well as the relationships that exist anong them [GRUBO02]. Every
knowledge base, whether it is a knowledge-based system or knowledge-level agent, is
committed to some explicit or implicit conceptualization. This approach is important in
our case of developing an ontology for software development tools, where we simplify
the view of software development tools represented as well as depict the eventual

relationships that exist among them.

The development of ontologiesis not a new concept. Various work on ontologies
has emerged in different domains of interest. We have introduced about fiv e different
views of what ontologies are depending on the domain of interest. However, their
common denominator is mainly characterized by defining the vocabulary with which
queries and assertions are exchanged among entities. These describe ontological
commitments (Ontological commitments are agreements to use the shared vocabulary in
a coherent and consistent manner) that enable different entities operating on different
theories to communicate about a domain of interest. All of this provides a foundati on for
our work. Our objective was to develop an ontology characterized by a certain kind of
formalism, alowing interoperability between different tools within the same domain of
interest, and capable of increasing the degree to which different software development

tools communicate with each other.

The entities sharing a vocabulary do not necessarily have the same knowledge
base; we may consider an entity that knows things and other entity that does not. An
entity that commits to an ontology is not required to answer al queries that can be
formulated in the shared vocabulary. In short, a commitment to a common ontology isa
guarantee of consistency, but not completeness, with respect to queries and assertions

using the vocabulary defined in the ontology

E SUMMARY

The objective for building this ontology is to offer a powerful and verstile tool
for the representation of the commonalities between essential features of two software
engineering tools (Rationale RequisitePro and the Software Engineering A utomation
Tools (SEAToals)). This represents several challenges for the ontology design, since it
requires tackling the difficult issue of providing an explicit and adequate technical
behavior of each feature, a crucia condition for them to be properly usable as the main
backbone in the interoperability between different tools [LENCO1].

Fortunately, we ended up by overcoming these challenges and developed an
ontology that can be used for interoperabity between two software development tools and
serving asapilot that can be extended to include more software devel opment tools. More
importantly, we developed a methodology, which can be used to add and analyze
additional tools to this ontology framework.

1C

[I. FOUNDATION AND RELATED WORK

A. INTRODUCTION

Several other researchers’ works form the foundation to this research and others
are related or (competing) work. The foundation work is full of examples dealing with
interoperability and communication of heterogeneous systems. While software
development tools is not one of these domains, the experiences of these previous
researchers provide a starting place for the development of a methodology that we can

use to develop a software devel opment tool ontology.

B. FOUNDATION WORK

There are several works that dea in some way with the interoperability and
communication of heterogeneous systems that provide a motivation and foundation for
our research. These works preceded ours and congtitute the basis for our software
development tools' ontology. Among these works we select the following according to
the degree to which they together with ours compliment each other and contribute to the
enrichment of software engineering.

1. Software Tool Interoperability [PUET02, 03]
a. Summary

Puett proposed an initid investigation into the development of a Holigtic
Framework for Software Engineering (HFSE) [PUET02, 03]. This Holistic Framework
establishes mechanisms by which existing software development tools and models
interoperate. He presents the holistic framework as an efficient way to provide seamless
interoperability between software tools and models with improvement to both process
and product. The HFSE captures and uses dependency relationships among
heterogeneous software development artifacts, the results of w hich are used by software
engineers to improve software processes and product integrity. This kind of framework
triggers the research for discovering dependencies among different aspects of the
software engineering process. In the meantime, an implementation of processes

enhancing the software integrity is likely to be achieved. This latter is one of the many

11

improvements expected from establishing an HFSE. A second advantage would be to
automate the software devel opment process as long as models or tool s, inputs and outputs
can be supplied through the holistic model. Different tools will be able to interact
automatically, with less involvement of the software engineer. Because all artifacts
within the holistic model are tracked together as a large dependency graph, it is possible
to extract select “dlices’ of the dependency graph for particular purposes, allowing more
“focused” development. For example, since the holistic model interacts with existing
process models such as sof tware risk, reuse, and testing; it will then be possible to extract
a“dlice” of the entire dependency graph (a dlice that repr esents the greatest risk) so that
prototyping and analysis effort is not wasted on developing artifacts that are already well
defined, understood, and/or successfully implemented in previous versions.

b. Concepts Useful tothe Thesis

One of the mechanismsthat is required by the HFSE is the development of
an ontology via which existing software development tools will interoperate.
Characterizing different software development tools, and capturing the different
commonalities between them to be later assembled in a kind of dictionary will be the
crucia part of this approach. This contribution will improve the communication between
the different parts of the software development process and the software development
tools themselves. The ontology for software development tools constitutes the first step
allowing the HFSE to capture and use dependency relationships among heterogeneous
software development atifacts. This ontology will be used as unifying framework for
improving communication and trandating between the software development tools. The
ontology will form the basis for the establishment of Component and Federation
representations of the artif acts and activities of software development processes.

2. Softwar e Evolution [HARN99C]

a. Summary

Harn, in his PhD dissertation [HARN99c], describes software evolution in
terms of a Relational Hypergraph moddl (RH model). His work extends the work of
severa others [LUQI90] [BADR93] [IBRA96] who established the use of directed
graphs and hypergraphs for managing the complexities of software evolution. Harn's

model establishes dependencies and links between key activities and artifacts of a
12

particular software development model and also between sequentia iterations of cycles
within that model. Furthermore, the model plays a significant role in allowing the
management of both the activities in a software development project and the artifacts
produced by tese activities using automated tools devoted to this purpose. As an
illustration of such atool, the Computer Aided Software Evolution System (CASES) was
developed at the Naval Postgraduate School in support of Harn's work .

CASES is a software tool that performs the following functions during
software evolution: control, management, formation, refinement, traceability, and
assignment. It manages and controls al the activities that affect a software system and
the relationships among these activities by changing them. CASES is based on the
relationships of the Software Evolution Process Model as shown in detail in Figure 1.

Software Issue Requirement
Prototype Analysis Analysis Reguirements
Demo Step Step Step

i - Specification

1 1
~ 1 1 - -
1 1
1 1 .
- x - - Deesi
=~ v ! 1 - - - &
- - Srep

~ - -
- Computer-Aided Software Evolution System - -
FUNCTIONS
Control Formation Tracezbility
- Management Refinement Assignment S
-+ N ~
7 Fs 1 1 ~ ~ Sea
s ' ' ~ ~ Specifications
~ ~
1 1 -~ ~
1 1 ~ ~
1 1

Softwrare
Product
Demo Step

)
Program Module
Integraton Implermentan oy
Step Step

Figure1l. Software Evolution Processes with CASES [HARN99¢].

In the relationa hypergraph, software evolution objects are activities and
artifacts affected by the software evolution process. They consist of “Steps’ and
“Components.” The relationa hypergraph links these objects and establish dependencies
between the objects via the use of a hierarchical refinement. Harn's work forms the basis

13

for establishing a Software Evolution Model which forms as the core for the Holistic
Framework for Software Engineering.
b. Concepts Useful to the Thesis
By adding extensions, the Relational Hypergraph becomes a very useful
mathematical construct for establishing dependencies between evolution artifacts and
forms a foundation for establishing interoperability and dependency tracking between
such artifacts. However, before such constructs can be developed, the artifacts and
activities (and their associated properties) must be identified and defined. An appropriate
means of capturing these artifacts and activities is through the use of an ontology.
Constructs within CASES can then be developed that alow the software designer to
“build” the objects, components, steps, and attributes that the designer uses. The
development of an ontology that unifies al the terms and improves the communicational
environment of software development must also be extensible to account for unforeseen
constructs.
3. Object-Oriented Model for Interoperability (OOMI)[YOUNO2]
a. Summary
Y oung's Object-Oriented Model for Interoperability [YOUNOZ2] relies on
Object-Oriented Anaysis and Design (OOAD) to establish a federation of objects for
interoperability between heter ogeneous systems. Young points out that consistent
representation of the same real world entity in various legacy software products is a
continual problem for system interoperability. To address this problem, he presents an
Object-Oriented Mode for Interoperability (OOMI). Thismode is used to solve the data
and operation consistency problems in legacy systems. The mode calls for the
establishment of a Federation Interoperability Object Model (FIOM) that is specified for
a specific group of systems (termed a“federation”) designated for interoperation. Y oung
states[Y OUNGO1]:
The FIOM consists of a number of Federation Entities (FEs) that contain
the data and operations to be shared between systems. The FIOM also

captures the trandations required to resolve differences in representation
of this data and operations.

14

An example UML representation of an FIOM is shown in Figure 2 below:

FederationEntityA

+FederationEntityA_Viewl
+FederationEntityA_View2

+FederationEntityA_ViewJ

FederationEntityB

T

FederationEntityD

FederationEntityC |

+FederationEntityB_Viewl
+FederationEntityB _View2

+FederationEntityB _ViewK

FederationEnti tya

+FederationEntityD _Viewl
+FederationEntityD _View2

+Eederai onEntityD _ViewM

+FederationEntityC_Viewl
+FederationEntityC _View2

+FederationEntityC_Viewl

+FederationEntityE_Viewl
+FederationEntityE _View2

+.Feder” ationEntityE_ViewN

FederationEntityZ

+FederationEntity Z_Viewl
+FederationEntityZ_View2

+Eéderai onEntityZ_ViewX

Figure 2. Federation Interoperability Object Model [Y OUNO2].

At runtime, the OOMI uses a middleware-based trandator to processthe
information contained in the FIOM. The trandator automatically converts instances of
real-world entity attributes and operations to the proper representation to enable
interoperation between systems (see Figure 3 below):

15

Source Intermediate Destination
Modd Model Model

St — Destination — Destination
System Model System

Translator

Source Model Translato

/ Middleware

Federation Interoperability Object Model

, 1
_Viewl & enemyOrderOfBattle_Viewl
goundWeponSystem _Vien2 enemyOrderOfBattle View2

goundWeponSysem _Viend enemyOrderOfBattle _Viewk

— groundCombarvehicle_Viewl
/o groundCombatVehicle View2 | =ieptegee'} federationEntityZ _Viewl
‘groundCombatVehicle _Viewnd federationEnityZ_View2

federationEntityZ_ViewX

Figure 3. Middleware Trandator Implementation [Y OUNOZ].

In addition to defining the constructs of the OOMI, Young provides a

speciaized toolset used to create the FIOM prior to run-time. Thistool set is called the
Object Oriented Modéel for Interoperability Integrated Development Environment (OOMI
IDE) and is used to:

Discover the information and operations shared between federation
components,

Provide assistance in identifying the different representations used for
such information and operations by component systems,

Define the transformations required to trandate between different
representations, and

Generate system-specific information used to resolve representational
differences between component systems.

b. Concepts Useful to the Thesis
Y oung's OOMI provides a mechanism for establishing the interoperability

of various software development tools and models. The only requirement for these tools
and modelsis that they be definable within an object paradigm [PUET02]:

16

Y oung identifies two concepts that will be directly applicable to mapping
multiple software engineering tools to each other within the HFSE:

heterogeneity of scope and heterogeneity of representation. Heterogeneity
of scope refers to the fact that differing amounts and types of information
can be specified by dif ferent systems to represent the state and behavior of
the same entity. Heterogeneity of representation refers to the fact that
different systems, when referring to the same entity, often have differences
in: terminology used, format, accuracy, range of values dlowed, and
structural representation of the included state and behavioral information.

Severa of the chalenges facing the HFSE will be how to resolve different
levels of abstraction for information provided in different tools and
models. The Federation Entity View (FEV) in Young's OOMI may
provide the ability to resolve these differences [Y oung02]:

The FEV contains the trandations required to convert between each
component system representation and the 'standard' representation of that
view. These trandations are used to resolve differences in physicd
representation, accuracy tolerances, range of values alowed, and
terminology used in representing a federation entity view. These
trandations are defined by the interoperability engineer and stored in the
FEV for subsequent use.

A dart towards tackling these challenges is via the use of an ontology
capable of capturing the commonalities between different software development tools.
This ontology will be used as a unifying framework for improving communication and
trandating between software development tools. The ontology will form the basis for the
establishment of Component and Federation Representations of the artifacts and activities
of software development processes.

4, Ontologies: Principles, Methods and Applications [USCH96]

a. Summary

Uschold and Grainger define “Ontology” as a term used to refer to the
shared understanding of some domain of interest [USCH96]. This domain of interest
may be used to solve particular problems in that domain. An ontology should necessarily
include some sort of world view conceived as a set of concepts. One powerful way to
solve the troublesome behavior of communication difficulties/inaccuracies is by building
ontologies that would:

Establish a unified environment for conceptual models and ideas,

Prevent redundant work and cross purposes,

17

Provide a widespread use of the domain of interest.

Ontologies are an efficient way to reduce or eliminate conceptual and
terminology confusion. They establish a shared understanding and unifying framework.
They improve:

Communication between people with different backgrounds, needs and
viewpoints arising from different contexts,

Interoperability among systems achieved by trandating between different
modeling methods, paradigms, languages, and software tools.

As an example of an ontology, the Enterprise Ontology [USCH98] was
developed within the Enterprise Project, a collaborative effort (by the Artificia
Intelligence Applications Ingtitute at the University of Edinburgh with its partners: IBM,
Lloyd's Register, Logica UK Limited, and Unilever) to provide a framework for
enterprise business modeling. The ontology was built to serve as a basis for this
framework, which includes methods and a computer tool set for enterprise modeling.
This ontology is presented as a collection of terms and definitions relevant to business
enterprises. The authors present natural language definitions for al the terms, starting
with the foundational concepts used to define the main body of terms such as entity,
relationship, and actor. As an example of an ontology, Table 1 is a complete list of the
terms defined in the Enterprise Ontology. The table shows a collection of terms and
definitions relevant to business enterprises. This collection is presented in natural
language and classifies the terms by categories, starting from activities and process all the
way through time.

18

Major Category

Ontology Terms

Activity

Activity Specification, Execute, Executed Activity
Specificaion, T-Begin, T-End, Pre Conditions, Effect, Doer,
Sub-Activity, Authority, Activity Owner, Event, Plan, Sub-
Plan, Planning, Process Specification, Capability, Skill,
Resource, Resource Allocation, Resource Substitute.

Organization

Person, Machine, Corporation, Partnership, Partner, Lega
Entity, Organizational Unit, Manage, Delegate, Management
Link, Legal Ownership, Non-Lega Ownership, Ownership,
Owner, Asset, Stakeholder, Employment Contract, Share,
Share Holder.

Strategy

Purpose, Hold Purpose, Intended Purpose, Strategic Purpose,
Objective, vison, Misson, Goal, Help Achieve, Strategy,
Strategic Planning, Strategic Action, Decision, Assumption,
Critica Assumption, Non-Criticdl Assumption, Influence
Factor, Critica Influence Factor, Non-Critical Influence
Factor, Critical Success Factor, Risk.

Marketing

Sale, Potential Sale, For Sde, Sale Offer, Vendor, Actud
Customer, Potential Customer, Customer, Resdller, Product,
Asking Price, Sdle Price, Market, Segmentation Variable,
Market Segment, Market Research, Brand Image, Feature,
Need, Market Need, Promotion, Competitor.

Time

Time Line, Time Interval, Time Point.

Tablel. Lig of the Terms Defined in the Enterprise Ontology [ENTROZ2].

The idea of the Enterprise Ontology was extended by The Enterprise Tool

Set (consisting of various components each serving one or more main purposes) designed

to facilitate the integration of multiple independently devel oped software tools in asingle

package (Figure 4). To an end user running an application, there is no visi ble distinction

18

between a function being achieved by a module in the Tool Set itself or by an outside

Tool Set
Administration

Agent #
Regisirations
/ \ N
/ Registration Tool

—-—— Task —_-—
User Manager Ontology
\ ‘; Builder
/ [
Models
|

Tool Tool Too
1 2 e n

Agent 1 Agent 2 Agentn

tool.

Procedure

Figure4. Tool Set Architecture [USCH98].

Figure 4 illustrates the flexible agent-based architecture of the enterprise
tool set used to achieve tool integration.

b. Concepts Useful to the Thesis

[USCH96] is useful because it defines what an ontology is, the usage of
domain of interest and the possibility of using it for the purpose of unifying certain
frameworks to solve particular problems in the same domain. The authors discuss the
uses of ontologies, and present an initid methodology to build an ontology - a
methodology that we adopted and modified to suit our purposes. This article served as
guidance in including the concepts collected or identified from the analysis of some
software development tools in our ontology. This necessity was fulfilled by including
concepts such as. entities, relations, and attributes and their definitions and inter -
relationships. Furthermore, the use of the Enterprise Ontology is an example for the
representation of the software development tool ontology. The conceptual anaysis for
this ontology is applicable for reuse with software development tools, avoiding the need
to start from scratch and build yet another special purpose process-modeling language.
Thisresultsin:

20

Savings due to reuse,
Savingsininitia coding time,

More responsive to change due to the increased modularity of the Tool Set
software.

Note that these three savings will be barely felt in the case of our software
development tools ontology (the first pilot work), but would be achievable in case of
extending it, building other ontologies, or reusing this one.

5. UML as an Ontology Description Language [CRANO1]

a. Summary

Cranefield, et. al. presents the Unified Modeling Language as a possible
language for defining and describing domain ontologies [CRANO1]. They also view
ontologies as having an important role in defining the terminology that agents use in the
exchange of know ledge-level messages. As object-oriented modeling, and the Unified
Modeing Language (UML) in particular, have built up a huge following in the field of
software engineering and are widely supported by robust commercial tools, the use of
UML for ontology representation in agent systems would help to hasten the uptake of
agent-based systems concepts into industry. The use of UML is amost generaized in
industry, therefore it provides an effective and scalable approach to conceptua modeling,
and thus it should be seriously considered as an ontology modeling language. The paper
also examines the potential for UML to be used for ontology modeling, compares it to
traditional description logic formalisms and discusses some further possibilities for
applying UML-based technologies to agent communication systems. The authors added
that according to their point of view, UML could be regarded as a suitable candidate for
knowledge representation.

b. Concepts Useful tothe Thesis

Since our ontology is mainly developed to catch the commonalities
between the different artifacts associated with different software development tools,
serving as a dictionary alowing communication and interoperability between these tools,
we choose the usage of a widespread adopted language: the Unified Modeling Language
(UML). The use of UML for our ontology representation helps to show the inter -
relationships between classes using relationships between classes and inheritance.

21

Moreover, the second reason behind our choice of using UML in depicting the inter-
relationships between the different artifacts present in our software development tool

ontology, resulted from the use of the Protégé software ontology capture tool. Protégé
also uses relationships and inheritances in showing inter -relationshi ps between classes of
the software development tools parts of the ontology. Thus, it is convenient for us to
show the rel ationship between classes of different ontologiesusing UML. Previously, we
presented Object-Oriented Model for Interoperability (OOMI) [YOUNO2]. OOMI

methodology uses a UML type structure to express the inter -relationships between
objects in different ontologies — we want to mirror that implementation. Our work

together with Object-Oriented Model for Interoperability (OOMI) are related to each
other and complement each other; this fact was also taken into account when choosing to
use UML.

6. Overview of Protégé [PROTO02]
a. Summary

Protégé-2000 is a knowledge-based design and knowledge-acquisition
system developed over more than a decade at Stanford University as a software
engineering methodology [MUSES54]. It is available free under the open-source Mozilla
Public License and is compatible with a wide range of knowledge representation
languages [PROTO02]. The tool alows the designer to create custom knowledge-based
tools for whatever application is needed. Protégé assists software developers in creating
and maintaining explicit domain models, and in incorporating those models directly into
program code. Protégé allows system builders to construct software systems from
modular components, including:

Reusable frameworks for assembling domain models,

Reusable domain-independent problem-methods that implement
procedural strategies for solving tasks [ERIK95]. Protégé allows r euse of
frameworks for building domain models through its support for
declarative domain ontologies.

The core concept behind the architectural makeup of Protégé-2000 is the
design of an ontology or the set of concepts and their relations. This alows for

granularity in a domain-specific area, which alows domain experts to use the tool to

22

establish a knowledge base. Using a problem-solving methods specific to that domain,
domain experts can then search this knowledge base.

The Protégé-2000 knowledge model has four main concepts that are
represented in the software by frames:

Classes,

Instances,

Slots,

Facets.

Thetool uses“classes’ and “instances’ distinctly and employs a third type
of modeling abstraction called “dots’. Classes represent the definitions of concepts,
instances represent the specific examples of a concept, slots represent attributes of either
aclass or an instance. Finally there are facets, which are defined as properties of slots,
and are constraints on, slot vaues [PROT02].

T notology-EeoPra Prokégé-zons_(hontologr-Reopros) LIS e imiLElbeiRed [oollEAlE i i), - i)
|

Pyoqeed Edit Windowr Help

o e =

BIHT W EJ ™ :E!ldiun EE
3 |Atton §< M Ducmnunision lmnpbl.nmmls'ﬂ
i.ﬁﬂl‘l % lariion Evil A veniTvms A |
g::‘;i:::;: : erumEYENTyEs, eObjecTToe

B AlcwEmrnalRh Fserueinamacakianiiiens:,
cwEdernalFeferene s

8 #palcatinnFath

S ApplcationSeormFile
S Applcationyersion | mmr -
& AProjacisLocimd 3

B | AselanPanent
B strParmission

5 At Permisziors ; Caruinal Defaul 'vl
B atrvaluskay .2 p— ———I—
& | Author 3 | ragured at lnasd I

8 AuihonD i
L& | Aulhorky
EIETI LT
B AuloBus pact
__S_Bau:-rT‘.-'p!

8| BazeTrpakiana
|8 | Bookmiark

: 230 A5 Errg, vEvamtDaba,
: Vahse Typs w e sk Tipes A

i wrirnEyeniDalaTypes,
eErEnEubType A

B EveniSTemes,
sTImeslamp &5 Siingy

| muRigk mmost |

B revenTR R s Sied |'|."] W] =

Classes
['ﬂ.-mplual:n:-ln 3

igstan ||| ca [E] @ || g | @ne. | oo | Eien. | e [Bons |sdbes [GO EIC@ORE sz
Figure5. Protégé Screen Shot of a Slot Interface with its Different Characteristics.

23

Figure 5 was taken from the RequisitePro Ontology as an illustration

showing the different slots, cardindities, instances, and queries allowed by the Protégé
Tool.

'-!"-....l. By - B eaPen Profdgd-2000 {00 b bo g y- e Py o poe _-J_D_'l!l
Frogecd Bt Window Help
||:. = o I!!. =
mu.-—u.qurl:l .ﬁ-":(: | gl [g]=]
(=X #nul:'ﬁnqu:slwl:ln-:Tn- FMams Dinezrmn iation fﬂﬂ'ﬂl’“! 'l.l'l [:J - | |
CES R NUITFR SO -
= u I T omolgy-ResPro_01033
T pnumRstum Tvpe s globals
2 enurREMaonLoakiug
S enumTagFommal .th
S enumdaaionkbgps Ol e -
{5 pnumiiswlookuns
=+ tnurn‘-le-wmrs Templaie Shry » |_,|\.-' CI I - |
3 BT
Hitee Piame | Tipm Cardnalty | Ciner Fanels B
E '“:"h'l"“:dm":-r""” B «BTO0CUmants Wieper single =3, mmlmm-]‘ueﬁulq -
oy 5| =Msg_EMSISWTFANIMHDHOS nbeger singla minIMUm=204Z, masmume 2042 d.
.éj"'“'“ 1on Bl erteriarciD_DocTypoFemiGaic. Fieper racguired muilipe
‘___I"' S: sWeg _FexiumirsilnhlsinFulurss . rksgsr Eingls minimum=11 T8, msemumr=1176 d
= L] : 5] mMeg_Dislsted UnereGroun rbmger singls minimum=21124, raxmum=2234d,
r_. h\.- He B oeg_ Do sionRag Oet o KF . ibags singla il il DS, a2 082 d.
= A T'““ == Bl sroupLookups_hsme 2 nbeger recpired mutipls minimum=2, madmum=2 defadi=l.
L:atnlng i Bl erteriacedD_Raquirermant [y =T raciarad multpke
1 e El 5| =Msg_CatsiogbemPatolUnion inb=ger singls minImUm=24 35 masmure 2136 d.
M| | 18] eDiscossonLookun_lee Wb rEgpired singie
= i " Bl enppFlag_Fomai kg o
BUpsTCIALEE T *| 5| =EvertSub_Empi® inbmger nona minimum=0, magmum=0 default=].
__.'_;mhﬁ,a—'__ 8| etustomTypaFetur n_Emply (=] nons
i B =DETpe_S0LArwehere Etirg ragirsd mutipks L
_ﬁ nwﬂamb l.n-,mul:lw:Tnnwm Wb mq\.qnu m-..u.pn 1=

e || | 8 [E] W *| e | ECh ﬂ | Bha hﬂ_ mmjr.t-ﬁfgﬂn‘ L1
Figure 6. Classes and Related Slots.

Figure 6 shows the different artifacts (classes, dots, facets...) of the
Protégé tool as well as the interface allowing the manipulation of the information used in
building the ontology. The classes are in the left side of the screen shot and dots on the
right.

The Protégé approach is quite different from that taken in traditional
object-oriented programming, where both the domain knowledge (dots of objects and the
values associated with particular slots) and the problem solvers (methods associated with
specific objects) are bundled together. In traditional object-oriented programming,
program execution is controlled by sending messages from one object to another, where
each abject encapsulates both data and the methods that operate on th ose data [BOOC94].
In the Protégé approach, however, the problem-solving methods are first-class entities
that have formal parameters that must be mapped to the appropriate referents in the

24

domain knowledge. The separation of problem-solving methods from the domain
knowledge on which those methods operate is essentia for component reuse. The
language for expressing ontologies in Protégé is a frame-based representation system in
which classes have dots of defined cardinality and data type. Slots may have data that
represent instances of other classes in the ontology (eg., when a class caled
“prescription” has a dot caled “drug-prescribed” that takes on as values instances of
another class “drug”). When the data type of adot is an instance, the ontology-definition
language allows the developer to set explicit constraints on the classes whose instances
are allowed as values for that slot. When the data type of adot is a string, the language
alows the user optionally to specify a grammar that restricts the kinds of strings that may
be used as values for that ot [MUSESS].

Facets are defined as properties of dots. Multi-inheritance is alowed
between classes and every instance of a class is an instance of the superclass of that class.
Classes can aso be instances of other classes. The Protégé-2000 environment is divided
into tabs. Each tab is divided into panes. The plug-in architecture of Protégé-2000
makes possible a number of specialized visual tools for entering guideline knowledge
[OVERO2]. The tool itself is GUI -based so all the design is done using forms and tabs.
The interface is easy-to-use due to the placement of widgets and tabs that give the
designer easy access to the tools. The tool also employs a visualization tool that allo ws

the designer to see and editor the ontology structure.

As a conclusion, Protégé-2000 gives the user the ability to construct a
domain ontology by using a robust knowledge model. The model uses domain -expert
knowledge to design a tool that can be accessed by other applications to tap into its
knowledge base.

b. Concepts Useful tothe Thesis

Protégé was originally used by Stanford to develop ontologies, and it will
be the main software tool that we will use to capture and define the ontology related to
software development tools in general and for identifying the specific ontologies related

to specific tools (SEATools and RequisitePro).

25

C. RELATED WORK

There is not much literature related to the development of ontologies for the
domain of software development tools. There does seem to be a lot of literature related
to the use of ontologies for capturing the terminology of a different domain for software
engineering purposes — i.e. to build software to support a particular domain. In fact, the
Enterprise Ontology aready presented in the beginning of this chapter is such an
example. Another exampleillustrating an approach based on the use of Protégé software
(engineering in describing the implementation of the Education and Outreach Network
(EON) architecture) is presented below.

1. Domain Ontologiesin Software Engineering [M USE98]

a. Summary
The article “Domain ontologies in software engineering: use of Protégé

with the EON Architecture” [MUSE98] illustrates an approach based on the use of
Protégé software. The article describes the implementation of the Education and
Outreach Network (EON) architecture by building middieware components (reusable,
embeddable software modules) such as a tempora database mediator for handling
requests of time-dependent data from a patient database, domain models for multiple
clinical specidties. It is a generic and extensible ontology for modeling clinical
guidelines and protocols, provides an eligibility-determination server, a protocol-based
therapy planner; and a mediator for explaining and visuaizing the behavior of other EON
components. The Medica Informatics Section at the University School of Medicine,
Stanford, California, U.S.A developed this ontology.

EON seeks to create an architecture made up of a set of software
components and a set of interfaces that developers can use to build robust decision-
support systems that reason about guideline-directed care. Moreover, according to the
author, the capability of ontologies to encode clinical distinctions not us ually captured by
controlled medical terminologies provides significant advantages for developers and
maintainers of clinical software applications. The use of explicit domain ontologies and
reusable middleware components should provide significant advantages to developers
who wish to embed decision-support software within more general clinical information

26

systems. In the EON project, a guideline modeler uses the Protégé-2000 knowledge-
editing environment to create and maintain models of concepts and relations in the
medical speciaty and of clinical guidelines and protocols.

The Protégé software-engineering methodology provides a clear division
between domain ontologies (formal descriptions of the classes of concepts and the
relationships among those concepts that describe an application area) and domain-
independent problem-solvers that, when mapped to domain ontologies, can solve
application tasks. The Protégé approach alows domain ontologies to inform the total
software-engineering process, and for ontologies to be shared among a variety of
problem-solving components. By generating Java classes from Protégé-2000 classes and
creating Java methods that can be invoked, the Stanford Informatics Section were able to
add behavior to the frame-based knowledge base that Protégé-2000 provides. By using
the CORBA technology, they were able to distribute EON components as clients and
servers that are available from anywhere via the Internet.

b. Concepts Related to the Thesis

This approach is similar to the approach of the HFSE. The main
difference between EON and HFSE is in the domain of the application — EON deals with
unifying the domain of health care (patients and clinics) while the HFSE is devoted to the
interoperability of software development tools; howev er, the use of ontologies for
capturing and using the structure and context of the particular domain to support
automated tools for the domain are similar.

2. DARPA Agent Markup Language [DAMLO0Z]
a. Summary

The DARPA Agent Markup Language (DAML) is a new technology that
is supporting the development of the “Semantic Web” (an improved World Wide Web
where agents can understand the meaning of hyperlinked entities). One of the things this
DARPA program is doing is to link together many ontologies of differ ent domains. They
have an ontology library with over 190 ontologies.

27

b. Concepts Related to the Thesis

Among these ontologies there are two ontologies dealing with “ Software”
[SOFT02]. Software tools which is rather small (4 classes and 11 properties) and
“Software Engineering” [SOENO02] is a bit bigger (66 classes and 120 properties).
However, neither of these ontologies really addresses our domain of interest (software
development tool artifacts). The first ontology is only used for collecting summary
information about different software development tools that someone might use, and the
second ontology deals with annotating one specific UML based software development
tool. Thesetwo factsrepresent further evidencethat whilethereissomework int he area,
there is no specific work on software development tool ontologies.

D. CONCLUSION

Throughout this chapter, we presented the different works that served as a
foundation for ours as well as the related (competing) work. Together, these works form
the basis for developing our ontology and forging our methodology. This methodol ogy
forms the main basis and focus of this research, as well as the main contribution of this

thesis.

28

. METHODOLOGY

A. INTRODUCTION

In the previous chapter we walked through the foundation for our work and some
related work that dealt in some way with the interoperability and communication of
heterogeneous systems existing in the same domain of interest. These works preceded
ours and constitute a foundation for our software development tools ontology. In this

chapter, we will present the methodology followed to achieve our goal.

B. RESEARCH METHOD

Because there is currently no ontology for the domain of software development
tools, we were unable to rely on previous work and instead had to develop our own
ontology. We were, however, able to leverage an existing methodology for establishing
our ontology [USCH96] and tailor that methodology to our purpose. The ontology
development process starts with identifying the purpose and scope of the ontology (step
1). The second step (step 2) is the development of feature analysis for the selected
domain (in this case, the domain of software development tools). This is followed by
(step 3) reasoning and brainstorming about observations and information generated by
the feature models to select the commonalities between the two tools and build a high
level ontology representing these commonalities. The next step (step 4) is to build more
detailed ontologies for each tool. These ontologies include more essentia characteristics
a afiner level of granularity. Next (step 5), we used UML to represent the relationships
between the three ontologies. Finally, we documented the ontology (step 6).

1. Step 1 -- Purpose of the Ontology

Themain purpose for developing an ontology for software devel opment toolsisto
overcome some of the obstacles (such as the limitation of interoperability between the
toals, lack of communication between the different software development tools, and poor
shared understanding between tools) by establishing a unifying contextual framework for
different software engineering tools. With an “ontology,” the different concepts and
ideas in the domain will be unified. The ontology actualy will determine the set of

29

semantic categories, which properly reflect the particular conceptua organization of the
domain of information, on which the system must operate, thus optimizing the results of
the shared information.
2. Step 2 -- Feature Modeling
To perform a domain analysis of the subset of tools, we proceeded by producing a
feature model for each tool of the domain of interest.
a. Overview of Feature Modding
Features are used to define software product lines and system families, to
identify and manage commonalities and variabilities between products and systems.
Attempting to define a feature model for existing software tools allows us to explore,
identify, and define the key aspects of existing software so that these aspects can be
described in an ontology. It is this ontology that then allows us to improve

interoperability between existing tools.

Our approach for the analysis and the investigation of the structure of
inputs, outputs, and relationships of a collection of individual software engineering tools
can be characterized as a domain analysis (of this subset of tools) and the production of
feature model of that domain. Thistechnique is well suited for the tools' features as well
as the identification of their essential characteristics. Use of these characteristics in
further steps of the research alows them to interoperate.

Domain engineering focuses on engineering solutions for classes of
software systems; it introduces and implements severa different kinds of models, such as
feature models. The feature model is an abstract representation of functionality found in
the domain. It is used during domain engineering in order to obtain an abstract view on
this functionality, which can be verified against the needs raised by the domain.
Therefore, each feature is arelevant characteristic of the domain.

The description of feature models was tied to the introduction of the
Feature-Oriented Domain Analysis (FODA™) [KANGOQ] approach in the late eighties

* Feature-oriented domain analysis (FODA) is a domain analysis method developed at the Software
Engineering Institute (SEI). The method is known for the introduction of feature models and feature
modeling.

3C

[GEYEOQ]. A feature model represents an explicit model of a device or system by
summarizing the features and the variation points of the device/system. Feature models
include the rationa e (a feature should have a note explaining why the feature is included
in the model) and the stakeholders for each of feature. A feature mode for software
system captures the reusability and configurability aspects of reusable software. Feature
models alow us to capture the taxonomic level (the underlying organization of features
in afeature diagram). They also provide a road map to variability in other models (e.g.
object models, use case models, interaction and state transition diagram). Griss et al.
describes the important relationship between use case models and festure models as

follows [CZAROQ0]:
a use case model captures the system requirements from the user
perspective (operational requirements), whereas the feature model

organizes requirements from the user perspective based on commonality
and availability anaysis.

As an example, Figure 7 illustrates a feature moddl of alighthouse system:

Lighthouse
System
Light Source Light Sensor Control
Batteries Omnidirectional Directional Automatic Manual

Eclipsor

Solar Energy

Figure 7. Feature Model of a Lighthouse System.
31

The feature model is defined around concepts and not around classes of
objects. We want to model features of elements and structures of a domain, not just
objects in that domain. We can use feature modeling together with various other
modeling techniques such as use case modeling, and class modeling.

Czarnecki and Eisenecker [CZAROQ] dightly modified and extended what
was introduced in FODA (features are typicaly arranged in a hierarchical structure that
spans atree) by adding some additional information, such as a short semantic description
of each feature, stakeholders interested in each feature, constraints, availability sites (i.e.,
where, when, and to whom afeature is available), binding sites (i.e., where, when, and
who is able to bind a feature), other attributes such as open/closed attributes (whether

new subfeatures are expected) plus priorities (how important a feature is).

Figure 7 illustrates of the dructure of a general feature modd in the
notation introduced by the FODA approach.

The root node (concept) of a feature tree aways represents the domain
whose features are modeled. The remaining nodes represent features, which are
classified into three types:

Mandatory features are always part of the system if their parent feature is
part of the system [GEYEOQQ]. The mandatory feature is indicated by a
solid circle on the edge leading to the feature (e.g., the light source in
Figure 7).

Optional features may be part of the system if their parent feature is
dready in the system [GEYEQOQ]. The decision whether an optiona
feature is part of the system or not can be made independently from the
selection of other features. The optional feature isindicated by an empty
circle a the edge leading to the feature (e.g., the light sensor in Figure 7).

Alternative features are connected via an exclusive or relationship, i.e.
exactly one feature out of a set is part of the system if the parent feature is
part of the system [GEYEQQ]. A typical aternative feature set isindicated
by an arc connecting the edges leading to the alternative features (e.g., the
two features automatic and manual in Figure 7).

Additionaly, features in a domain are of two categories. comm on and
variable [GEYEQO]. Common features are aways part of a system in the
regarded domain (a feature present in al instances of a concept). Variable

32

features are only part of some systems. The classification of a feature is
determined by its type, and by its position in the feature tree. Common
features are always mandatory. Another prerequisite is that there are only
mandatory features in the path from the root node to the common feature.
Optional and aternative features are always variable (e.g., in Figure 7, the
battery feature is common feature, and the eclipser feature is not).

b. Feature Modeling

To perform feature modeling, we have to know the sources of features,
identify features, and finish by following some general steps in feature modeling
[CZARO0Q]. Sources of features include the following.

Existing and potential stakeholders,

Domain experts and domain literature,

Existing systems,

Pre-existing models (e.g., usecase models, object modéls...).

Models created during development (i.e., features gotten during design
and implementation).

Strategies for identifying features [CZAROQ]:

Look for important domain terminology that implies variability, during
feature modeling, we document not only functional features but also
implementation features.

Examine domain concepts for different sources of variability: what
different sets of requirements do these variability sources postulate for
different domain concepts?

Use feature starter sets to start the analysis; a feature starter set is a set of
per spectives for modeling concepts.

Look for features a any point in the development. Update and maintain
feature models during the entire development cycle.

Identify more features than you initialy intend to implement in order to
create some room to grow.

Generd stepsin feature modeling:
Record similarities between instances (i.e. common features).
Record differences between instances (i.e. variable features).

Organize features in feature diagram, into hierarchies with classification
(mandatory, optional, aternative, and/or optional dternative features).

Analyze feature combinations and interactions.

33

Record al the additional information regarding features.
All the previous steps are referred to as the “micro-cycle’ of feature
modeling because they are usualy executed in small, quick cycles.

The feature tree is the basic description of a feature model. It defines a
hierarchical structure over the set of features of a domain, thereby defining the parent -
child relationship between different features. But typically there are more relationships
between features. One relationship is called “ Or-Features’ [CZAROQ0]. This relationship
connects a set of optional features with a common parent feature. The meaning of the
relationship is that whenever the parent feature is part of a system, at least one of the
optiona features in the set has to be part of the system. Czarnecki and Eisenecker
[CZAROQ] extended the FODA notation so that this relationship can be expressed in the
feature tree.

Other types of relationships which cannot be expressed with the feature
tree notation are the “required” and the “excluded” relationships [CZAR00]. The
required relationship connects two variable features such that if one of the features is
chosen to be part of the system, the other feature has to be chosen, too. The excluded
relationship states that only one out of a set of features can be part of the system (e.g. in
Figure 7, if the automatic control feature is chosen, then the light sensor and the eclipser

feature have to be chosen).

Some relationships such as “default features’ or “feature combination
recommendations’ cannot be expressed in the tree notation. Typicaly they have to be
defined in an external representation. One solution to extend the use of this approach
(feature modeling) would be to extend UML with feature diagram notation. This would
prove a popular solution given the high level of acceptance of the UML in the software
industry.

C. Feature Tree of Selected Software Engineering Tools
(RequisitePro and SEATo0lS)

In order to exploit the approach of feature modeling in a constructive way
for our application and show the eventua interoperability of some software engineering

tools, we built feature diagrams for the following tools. RequisitePro requirements

34

management tool and the Software Engineering Automation Tools (SEATools). The
choice of these tools was tailored by the fact that this subset includes both a commercial
and research tool and represents substantia elements of the software development
process itsdlf.

3. Step 3 — Egtablishing Commonalities

After producing a feature modeling for each tool (RequisitePro and the
SEATOooals) of our domain of interest, we established the commonalities existing between
the two feature models as for their feature trees, and the common artifacts existing in the
two tools. The establishment of these commonalities was the result of reasoning and
brainstorming about the information generated by the feature models to sdlect the
commonalities between the two tools. The lists of features were generated and combined
in a high-level parent-child relationship. Moreover, the lists contain not only the
common features of the two tools in question, but also the common features of many
other software development tools as well.

4, Step 4 — Tool Ontologies

Since we choose how to represent the essential characteristics for each tool in an
ontology, we are making design decisions. In this case our ontologies are initidly
informally described. To guide and evaluate our designs, we need objective criteria that
are founded on the purpose of the resulting artifact. We did our best to make our
ontologies follow some criteria that we judged necessary for knowledge sharing
[GRUB95]. In terms of clarity, our ontologies should effectively communicate the
intended purpose for which they were built. Definitions are given as objectively as
possible. When a definition can be stated in logical axioms, we did that. All definitions
are documented with natural language.

Coherence: the software development tools ontologies, if necessary,
sanction inferences that are consistent with the definitions.

Extendibility: the potential objective of our work is to build an ontology
that anticipates the uses of the shared vocabulary. The hope is that our
ontology will serve aframework or foundation for further extensibility. In
other words, one should be able to define new terms for special uses based
on the existing vocabulary, or include other software development toolsin
away that does not require the revision of the existing definitions.

35

Minimal encoding bias. avoid making biased choices. Choices were not
made purely for the convenience of notation or implementation.

Minima ontologica commitment: the software development tools are
developed in a way that the emphasis was on minima ontological
commitment to support the intended knowledge sharing activity.

5. Step 5 - UML Representation of the Domain

Since our ontology is mainly developed to catch the commonalities between the
different artifacts associated with two different software development tools, serving as a
dictionary alowing communication and interoperability between these tools, we choose
the usage of the Unified Modeling Language (UML). The use of UML for our ontology
representation would help to show the inter-relationships between classes and
inheritance.

6. Step 6 -- Documentation

Documentation involves the recording, maintaining, and reporting of each step
undertaken in each phase of the process established to develop the softwar e development
tool ontology. It includes all plans, meeting schedules, reports for the work done and
decisions taken. However, specia attention was put on the specific documentation such
as the features lists (from the rough features lists to the ontolo gy filtered list), the feature
diagrams representing all the features selected, the Protégé databases including the three
ontologies developed for the purpose of the research, the UML diagrams showing the
class diagrams for each ontology and the relationship that exist between the UML
diagramsfor each tool used in this research and the high level UML diagram representing
the high level ontology. The ontology documentation was updated as something changed
with time and as decisions were made during reviews.

C. CONCLUSION

This chapter presented the methodol ogy to devel op the software devel opment tool
ontology. The process starts with identifying the purpose and scope of the ontology,
followed by the devel opment of feature analysis for the domain of software development
tools, then reasoning and brainstorming about the information generated by the feature
models to select the commonalities between the two tools and build a high level ontology

36

representing these commonalities. The next step was building mor e detailed ontologies
for each tool before using UML to represent the relationships between the three
ontologies, and the final step was the documentation of the ontology.

37

THIS PAGE INTENTIONALLY LEFT BLANK

38

IV. ESSENTIAL TOOL CHARACTERISTICS

A. INTRODUCTION

In the previous chapter, we presented the methodology used to develop an
ontology for software development tools. We identified the domain analysis as part of
the methodology to generate the essential tools characteristics. In this chapter we are

going to isolate and explain the domain analysis.

B. DESCRIPTION OF THE RATIONAL REQUISITEPRO

Managing requirements is one of the most significant factors in deivering
projects on time, and on budget. RequisitePro helps projects succeed by giving teams
(project managers, quality assurance managers, testers, developers, etc.) the ability to
manage al project requirements comprehensively, while facilitating team collaboration
and communication. It increases the likelihood of delivering quality systems on time and
on budget. Rational Software Corporation's RequisitePro is a flexible and easy -to-adopt
requirements management tool, used for documenting and managing requirements
throughout the software lifecycle. Requirements documents, under RequisitePro control,
can be created, modified and managed, and are complemented with database information,
such as requirement attributes, tracesbility relationships, and revision history.
Additionally, email-enabled discussion groups capture the team feedback on project-
wide or requirement-specific issues [RATIO2]. Customers can use RequisitePro’s
predefined project structures out-of-the-box or smply define their own. Moving beyond
conventional requirements management, RequisitePro combines both doc ument-centric
and database-centric approaches. By deeply integrating Microsoft Word® with a multi-
user database, RequisitePro enables the organization, prioritization, and the easy tracking
of requirements changes. RequisitePro can aso be extended using the RequisitePro
Extensibility Interfface, a Component Object Model (COM)-based Application

Programming Interface (API), which alows programmatic access to requirements.

39

RequisitePro provides:

access to al requirements for every team member, by using acentra
database,

an easy way to query requirements information for all team members,
an easy way to check for requirement coverage.
Developers can use RequisitePro to:
document in detail al features defined by marketing,
provide quick and easy impact analysis tailored to each team member.
Developers can quickly review the impact of changed marketing requirements on
their specifications, documentation writers can quickly review the impact of any
requirement change on the user manual. Either the Windows client (Rational
RequisitePro) or the Web client (Rational RequisiteWeb) allows users to create, view and
modify requirements stored in a commercialy available database (Microsoft Access,
Microsoft SQL Server or Oracle). In RequisitePro, requirements ar e organized by type.
Each requirement type provides a set of requirement attributes, which can easily be
modified [UNDEO2].

RequisitePro provides an Import Wizard that alows the user to easily extract
textua requirements from external Microsoft Word documents or databases stored in a
Comma Separated Vaue (CSV) format. When importing from Word documents, the
requirements, the entire document, or both can be chosen for import into the project.
CSV files need not be created by RequisiteOPro and may include files saved by
Microsoft Access, Microsoft Excel, or other databases capable of saving datain the CSV
format.

In summary, while RequisitePro's ability to manage text-based artifacts is
excellent, its capacity to handle graphics-based artifacts is limited by the functionality
provided by Microsoft Word. The “views workplace” is the primary tool used for
requirement analysis (including linking and tracing) and report generation. From aview,
the user can modify artifacts, artifact attributes, and trac eability relationships. In
addition, requirements can be viewed and be opened smultaneously. Thus it provides a

powerful query facility for viewing requirements any time within the context of its parent

40

document. RequisitePro alows multiple views and their relationships. View formatting,
loading, saving, and printing are supported. RequisitePro can aso export views using
any of several formats including Microsoft Word. RequisitePro is an effective text -based
artifact manager with a limited capacity to handle non-text objects[EVALO2].

1. RequisitePro Feature Analysis

In the feature analysis of RequisitePro, “Projects’ are found to be the top-leve
objects. Projects are used to define documents, requirements, and requirement attribute
types and provide a mechanism for enabling or disabling the RequisitePro's security
features. Each RequisitePro project is maintained in its own sub-directory and consists
primarily of a database file and the project documents. The project database include the
following information:

attribute values,
traceahility relationships,
requirement types,
attribute definitions,
document types,

revision histories,

security information, etc...

Requirements (in either the “Word Workplace” or a“View Workplace”) may be
easly created, edited, or moved. The user can establish relationships among
requirements. Requirement types, as with document types, are user definable.
Requirements possess attributes and may be arranged in a hierarchy in which each
requirement level depicts increasing amounts of detail about the related high-level
requirement(s).

Documents are essentially Microsoft Word documents and rely on the project
database for the efficient management of requirements and their attributes. Document
types are user-definable and instances of documents may contain product requirements,
requirement specifications, use cases, test cases, or any other user -specified requirement
types.

41

Attributes facilitate requirement management by allowing the user to define

properties describing arequirement. These properties include:

Status,
Authors,
Security,
Priority,
Stability,
Version,
Date, etc...

Attribute values may contain text, numeric data, or may be obtained from user -

defined lists. Attributes are associated with a particular artifact type and can vary from

project to project. Attribute and requirement type definitions from previous projects can

be reused if desired. If the attributes supplied by RequisitePro are insufficient, the user

has the option of defining his own requirement attributes.

Severa major features of RequisitePro address the control of access by multiple

users. These features, which provide control a both the project and document level,

include;

Open Project/Document Options. When opening a project, the user is
given the option to open as Read Only, Exclusive, or both. The Read
Only option gives the user the ability to view but not change the project or
its documents. Exclusive access is available to only one user at atime and
can only be used when another user does not dready have the project
open. This mode enables the user to delete items such as document types,
requirement types, attributes, and values without disrupting work
elsewhere. The Read Only and Exclusive options can be combined to
prevent al users (including the current user) from making changes to the
project while the current user has the project open.

Security Options. The security features of RequisitePro determine the
availability of the Open Project/Document options. Read, update, and
create/delete permissions for specific document and requirement (artifact)
types can be assigned to groups. Where applicable, read and update
permissions can also be assigned for requirement attributes and attribute
values.

Document Locking. Document locking is aless restrictive form of access
control than the options provided by the Open Project/Document dialog.

42

Locking applies only to a selected document and prevents the modification
of text, formatting, graphics, etc. while alowing document and
requirement (artifact) properties and relationships to be updated in the
database.

Display Updates. RequisitePro updates the Word Workplace when the
requirement text in the document is modified and the document is saved.
The “Refresh All” command on the View menu permits the refreshing of
each open view and forces the query for each view to be rerun.

All of this information represents an archetype of the analysis of features. Each

feature was analyzed by reading about its functional and non-functiona effect and by the

use of the tool itself. Furthermore, we analyzed, described and documented their actions.

2.

Key Functions of RequisitePro

Below are some of the essential features provided by the Rational RequisitePro
tool. Itisnot necessary that all these features show up in the ontology list presented in

the follow-on discussion, but they do provide a starting place for capturing important

concepts for the feature tree:

3.

Parses a source document to load requirements into database;

Synchronizes textual Software Requirements Specification (SRS) with
database contents;

Defines different attributes for different types of requirements and set
atribute values for individual requirements;

Defines traceability relationships or links between individual requirements
and between requirements and other system elements

Tailors usability options;
Includes learning aids, such as a tutorial and/or sample projects;

Integrates with other tools, such as testing, design, and project
management;

Defines users and groups and their access privileges,
Enables threaded discussions on requirements,

Includes web interface for database query, discussion, and the updating of
requirement attributes.

Feature Tree of RequisitePro

The complete RequisitePro feature treeis presented and explained in Appendix B.

The following feature tree in Figure 8 is a portion of the tree presented in Appendix B.

43

This part illustrates the detailed analysis undertaken to track the essential characteristics

of RequisitePro.
L

Treacability

Track all the

requirements

St
requirements Organize

relationships

Identify high
level
requirements

Capture
requirements
changes

View chain of
relationships

Categorize
requirements

O

Sort Filter Uﬁderstand . Requirements Classify by classify by
. . impact of | Review changes P,
requirements || requirements changes maintainability types status

Figure 8. Subset of the RequisitePro Feature Tree.

As shown in Figure 8, the “track al the requirements’ is divided into two
mandatory features “set requirements relationships’ and “organize’. The “sat

44

requirements relationships’ feature is aso divided into two mandatory features. The
“identify high-level requirements’ feature is divided into two mandatory “Or-features’.
Furthermore the “ categorize requirements’ feature, derived from the “organize” feature is
divided into two dternative-optional features either “classify by types’ or “classify by
status’.

4, Ontology List

The essentia characteristics of the RequisitePro tool resulted from the analysis of
the tool and the feature diagram of the tool. These features represent potential ontology
terminology and are listed in the list below. Key artifacts with their actions (behaviors
and attributes) begin to represent the ontology for the Rational RequisitePro tool, and will
be essentia in distinguishing and identifying commonalities with features fr om other
tools (such as those of the Software Engineering Automation Tools (SEATools).

Ref # | Feature Description
1 Rational RequisitePro | Reguirements management tool
2 Management Documenting and managing requirements throughout
the development lifecycle
3 Requirements Including linking and tracing and report generation
anaysis
4 Non-functiona The subset of non-functiona features such as
features integration with other tools, security, and remote
usage viaweb
5 Manage projects Projects are the top-leve objects managed by
ReguisitePro
6 Manage teams Allow members of the project team to work in a
collaborative environment
7 Manage documents Capture, communicate, organize, and track the
information
8 Set up new project Allows the user to create new project templates from
template existing projects
9 Remove a project Remove projects from project list
from project list
10 Allow project Allow the revision of the project
revision
11 Unify teams Unify project managers, QA managers, testers,
developers, etc. in communicating and managing
systems requirements
12 Allow Interaction Records the thought process behind decisions made
with stakeholders about requirements

45

Ref # | Feature Description
13 Provide standard Customers can use Rational RequisitePro's
project templates predefined project structures or define their own
14 Report statistics Requirement metrics provide project managers with
statistics —those statistics are displayed in Excel
15 Provide isolated Each project is maintained in its own sub-directory
database
16 Synchronize textual Synchronize textua SRS with database contents
Software
Requirements
Specification (SRS)
17 Manual revision of Allow manual revision of the project
the project
18 Automatic revision of | Allow automatic revision of the project
the project
19 Notify teams Keep everyone informed of the current requirements
information
20 Discuss and query Enables threaded discussions on requirements
21 Provide collaborative | Allows the collaboration among the team
design environment
22 Record comments Provide away to record comments
23 Provide Consistency | Consistency is checked by other members of the
collaborative team
24 Provide Everyone informed of the current requirements
Synchronization information
25 Improve Efficiency Provides mechanisms for better communication
26 Improve Everyone informed of the current requirements
Understandability information with traceability to early design
decisions
27 Improve Optimize team collaboration around the requirements
Effectiveness
28 Ease the Accessto Provide access to al requirements for every team
documents member, by using a central database
29 Customi ze the Documentation is appropriate to customers
documentation
30 Maintain documents | Provides a document repository
31 Archive Allow the archiving of old documentation
32 Detect documentation | Automatically detects changes to existing
changes documentation
33 Monitor linking Defines traceability relationships or links between
individua requirements and between requirements
and other system elements
34 Set up links Create relationships between artifacts in either the
Word or View Workplaces
35 Identify and clear Relationships between previoudly linked

46

Ref #

Feature

Description

suspect links

requirements are marked as suspect if the text, type,
or attributes of either requirement is changed. This

relationship can be cleared in either Word or View

workplaces

36 Automatic set to Allows links to be automatically set to “suspect”
“ suspect”
37 Manual set to Allows links to be manually set to “suspect”
“suspect”
38 Automatically clear | Automatic clearing of suspect links
suspect links
39 Manually clear Manua clearing of suspect links
suspect links
40 Provide traceability Provide a convenient way of viewing chains of
relationships between requirements
41 Control requirements | Control the access by multiple users, which provide
control at both the project and document level
42 Create requirements | Create requirements through Word or a View
Workplace
43 Edit requirements Edit requirements through Word or a View
Workplace
44 Verify requirements | Ensures that requirements serve as direct input to test
creation
45 Update requirements | Updates the Word Workplace when the requirement
text in the document is modified and the document is
saved
46 Add requirements Add requirements to the project database
47 Ddete requirements | Enable the user to delete items such as requirement
types, and attributes without disrupting work
elsewhere
48 Provide Define different types of requirements
requirements’ type
49 Assign attributes to Defines different attributes for different types of
requirements requirements and set attribute values for individua
reguirements
50 Prioritize Ensures that the most important things get built first
reguirements
51 Relocate previous Rel ocate previous requirements
reguirements
52 Save requirements Saving requirements is supported
53 Label Requirements | Provides a change “pending” function, until the
temporarily change is appropriately approved
54 Uniquely identify A unique identifier is assigned to eac h requirement
reguirements
55 Facilitates Devel opers can assess whether they have

47

Ref # | Feature Description
requirements documented in detail al features
coverage analysis
56 View approved use- | Connects requirements with use-case models
case instantly accessible by developers. It helps to ensure
that the implemented functionality reflects the
customer needs
57 Track dl the Provides views that track the status and attributes of
requirements all the requirements
58 Set requirements Establish relationships among requirements
relationships
59 Organize Requirements are organized by type
Requirements
60 Establish requirement | Arrange the requirements’ attributes in a hierarchica
hierarchies way
61 View chain of View the requirements’ chain of relationships
relationships
62 Sort the requirements | Allow the sorting of the requirements
63 Filter the Allow the filtering of the requirements
reguirements
64 Facilitate the Provide easy impact anaysis tailored to each team
Understanding of the | member
impact of changes
65 Report generation Automatically generates user defined reports
66 Tailors usahility Provides the user the ability to set specific usability
options options
67 Remote use viaweb | Includes aweb interface for database query,
discussion, and for updates to requirement attributes
68 Provides tutorial Includes learning aids, such as tutorial and/or sample
projects
69 Word environment Fitsin customers environment, making it easy to use
and import wizard and adopt and alows the user to extract textua
requirements from external Wor d documents
70 Integration with Integrates with other toals, such astesting, design,
software tools and project management
71 Reduce errors The collaborative environment hel ps ensure that
errors are identified early and fully corrected
72 Provides Security Permissions to access particular features are assigned
mechanisms to specific groups
73 Finds current version | Using the Web access ensures that the stakeholders
of document always see the most-up-to-date requirements
74 Facilitates contextual | Allows the user to capture information about the
understanding context from which a requirement has been derived
75 Set user security Defines users and groups and their access privileges
privileges

48

Ref # | Feature Description
76 Lock documents Apply locking only to selected documents

Table2. RequisitePro Ontology List.

This ontology list is derived from the feature tree; the order given here to the
features is represented by the order of the featuresin the different layers of the tree. The
layers are read in a top down approach. The references are alocated to the features
horizontally from left to right layer -by-layer. See Appendix B to get aclear picture of the
feature tree structure of this potential ontology terminology.

C. SEATOOLS

1 Introduction

Software prototyping evolved as an effective solution to tackle problems
generated by the fact that most of the time there is a mismatch at the end of the coding
phase of project development between the product delivered and customer expectations
of what that product should have been. Leffingwell and Widrig in their book Managing
Software Requirement: A Unified Approach present three concepts that describe the
underlying reasons for this mismatch [LEFFOQ]: 1) the “Yesbut...” concept -- wherethe
user generdly likes what he sees but wants changes, 2) the “Undiscovered Ruins’
concept -- where the user sees a piece of functionality that leads him to desire additional
(previoudly unstated) functionality, and 3) the “Mary had alittle lamb” concept -- where
the devel oper misunderstood what the customer wanted because of semantic ambiguity in
the natural language expression of the customers requirements. The customer finds the
final product is not exactly what he/she expected, new ideas triggered hisher request to
add new requirements, or the developer misinterpreted the customer requirements. This
mismatch in expectations drives the necessity for effective prototypes (constructed and
modified rapidly, accurately, and cheaply) [LUQI91].

2. Description of the Software Engineering Automation Tools
(SEATo0ls)

Prototyping is the development of an archetype of the final product summarizing
al (or some) of the requirements and the specifications requested by the customer.

49

Furthermore, the archetype is presented to the customer for evauation and eventually
provides the developer with the feedback necessary to determine the degree to which the
requirements applied on this scaled down version map to his expectations. As a result,
adding additional requirements, or changing requirements can be done cheaply and
efficiently at this stage of development.

Prototyping has become more feasible with the advent of automated tools
developed to generate the necessary code satisfying specific requirements [BERN96].
Because time schedules, input and output variables, and target languages are crucia in
real-time embedded systems projects, rapid software prototyping has emerged as a
specia type of prototyping that alows for improved analysis and design of software
systems [DURA99].

A good example of atool available for such purposes is the Software Engineering
Automation Tools (SEATools). This tool was developed by the Naval Postgraduate
School, Software Engineering Group. This group has recognized and extolled the use of
computer-aided prototyping in software development as a way to boost the efficiency of
software projects through understandable requirements and validation of the system
design. Concerning the return on investment (ROI), the use of prototyping seems to
generate more benefits than without it. As an illustration, Bernstein in his article
“Forward: Importance of software Prototyping” estimated a net return of $.40 within the
life cycle of the system development for every $1 invested in prototyping [BERN96].

3. Evolution of the SEATools

The original version of SEATools evolved from an integrated collection of tools
that generated source programs directly from high-level requirements specifications
[LUQI8E]. Figure 9 illustrates the major functions and components of SEATools
(formally called the Computer Aided Prototyping System (CAPS)) accessible via a user
interface. SEATooIs provides computer aid for rapidly and inexpensively constructing

and modifying prototypes [LUQI96].

5C

Editors

PSDL | Ada | Imterface
Editor | Editer | Editor

Translator

i BCS

Project User E xe cution|

Control Interface Seheduler Qyupport
Merger +

Compiler

Software Base

Figure 9. Generd Structure of the SEATools Environment [USERO2].

SEATools was originaly developed using the C and Ada programming
languages, and implemented in a UNIX environment. It consisted mainly of three
subsystems:

Editor subsystem,
Execution support subsystem, and
Software base subsystem [MCDOO01].

Over the past five years CAPS has dowly begun a transition from UNIX based
systems to a system capable of running on multiple platforms to include Linux and
Microsoft Windows utilizing the portability of the Java programming language. The
system has now been successfully ported to the Java language and implemented in a

standalone version on a PC.

The editor subsystem contains:
A Prototype Software Development Language (PSDL) editor,
An Ada editor, and
An interface editor.
The execution support subsystem embodies:
A trandator,
A scheduler, and
A compiler.
The software base subsystem is part of a software database system. It is
characterized by its ahility:
51

To track all the PSDL description and Ada implementations for al
reusable software componentsin CAPS.

To provide reusable software components for each prototype previously
developed in CAPS that has a complete PSDL specification and
executable code.

The SEATOools process follows four essential prototyping stages as shown in
(Figure 10).
Software system design,
Construction,
Execution, and
Requirements eva uation/modification

Generateinitial

requirements
A J Reusable DBMS
Construct/modify Software

prototype design <

Software Design
Database Database

........

; Y
Modify Generate target

requirements H source code D
\ : Execution
H Support
v System
Demonstrate
Prototype

Figure 10. Iterative Prototyping Process [LUQIO0Z2].

Each prototype design starts by identifying and analyzing the problem to be
solved, followed by deciding about the parts to be prototyped. Then, the designer draws
dataflow diagrams using the SEATools PSDL editor. Finaly, the prototype is trandated
into the target programming language for execution and evaluation. The design database

assists the designers in managing the design history.

52

4, Summary of Functionality

SEATools has been shown as a powerful research tool in prototyping large
complex embedded software such as the command-and-control station, cruise missile
flight control system, missile defense systems. As stated by Lugi et. a. [LUQIOZ]
SEATools demonstrated payoffs include the ability to:

Formulate/vaidate requirements via prototype demonstration and user
feedback,

Assess feasibility of real-time system designs,
Enable early testing and integration of completed subsystems,
Support evolutionary system devel opment, integration and testing,
Reduce maintenance costs through systematic code generation,
Produce high quality, reliable and flexible software,
Avoid schedule overruns.

5. Feature Analysis

SEATools provides the following kinds of support to the prototype designer:

Computer-aided design,
Computer-aided software reuse,
Time checking,
Consistency checking,
Configuration management,
Evolution Control System.

The feature model described in the SEATools feature tree (Appendix C)
illustrates the different features that make this support possible. This feature model
defines a hierarchical structure over the set of features of the tool. The features in the
feature tree summarize the results of the SEATools features' analysis as follows:

All the features represent the important domain terminology that imply
variability (not only functiona features but also implementation features
were documented).

All the features representing the different sets of requirements postul ated
by different variability sources for the SEATools domain concept.

All the high level features appeared to be feature starter sets to start the
analysis (recall that a feature starter set is a set of perspectives for
modeling concepts).

53

The features reported in the feature tree are colleted throughout the
development. Some of them are updated and maintained during the entire
development cycle.

The features represented in the feature model are selected among more
features initially intended to be implemented.

All kinds of features (mandatory, optional, and alternative) were identified
and represented and present in the feature tree.

To illustrate these points, below is a part of the SEATools feature tree taken from
the complete feature tree in Appendix C. This “subset” was chosen for its representation

of some of the features cited above.

PSDL interface requirements

gf;s;‘: " ediit graphical || view graphical
design design design view code edit code

OTHER TEXT
Ada SDE EDITOR

Figure 11. Subset of the SEATools Festure Tree.

Figure 11 demonstrates the different features derived from the feature “edit”.
These features are al (by chance) “mandatory-features’. However, the very lower level
feature “other text editor” is divided into two mandatory features, but their choiceis
alternative.

55

PSDL Timing
Congtraints

Periodic Non-time-criticg Sporadic
constraints | operations constraints
. ! - Maximum Minimum Maximum
Period Firish Within Execution Time Calling Period | | Response Time

Figure 12. Timing Constraints Subset of the SEATools Feature Tree.

The timing constraints in SEATools depend on the operation itself, and as shown
in Figure 12, consists of: Maximum Execution Time (MET) that represents the longest
time between beginning and completion of execution, Minimum Calling Period (MCP)
representing the minimum time between two successive activations, and the Maximum
Response Time (MRT) showing the longest time between input stream write o utput

stream write.

Once completed, the feature diagram was analyzed to identify potential ontology
terms. These terms were compiled into a SEATools Ontology List.

6. SEATools Ontology List

We arrived at the essential characteristics of SEATools by analyzing the feature
model. Potential SEATools ontology terms are compiled in thislist. The artifacts with
their actions (behaviors and attributes) represent possible ontology terminology for the
SEATools, and will be essentia to distinguish and identify commonalities with features

from other tools such as those of the RequisitePro.

56

Ref # | Feature Description

1 SEATOools Software engineering tools (integrated collection of
tools) for developing prototypes of real-time
systems

2 Management prototype Manage prototypes

3 Build prototype Build prototype

4 User interface Helps user invoke SEATools

5 Develop systems Develop functional prototypes

6 Analyze requirements Anayze requirements through evolutionary
prototypes

Generate code Automatic generation of the code

8 Model editor The SEATooIs editor that helps a user create a
model

9 Modification Modify existing prototypes and graphs

10 Graphical editor GUI interface for data-flow diagrams

11 Expert-system design | Provides a user interface that alows the user to

mode access SEATools

12 Debugger Finds errorsin the model

13 Browser Allows user to browse the model

14 Evolutionary prototype Support evolutionary prototyping

15 Feasibility Assure Feasibility study

16 Project control Assure control of projects viathe use of merger

17 Interaction Allow interaction with the proposed system with its
environment

18 Constraints Limitationsin a development effort

19 Software base One of the five categories of the SEATooIs
software

20 Execution support system | The windowsin which SEATools initially invoked

21 Creation Allow the creation of a prototype, PSDL, and
graphs.

22 Adding Allow adding information to an existing prototype

23 Refine systems Allow changesin an existing prototype

24 Deletion Allow the deletion of undesired information

25 Allow communication Allow communication between different partsin the

model

57

Ref #

Feature

Description

26

Control communication

Control communication between different parts in
the model

27 Tools Differentiate tools

28 Integration of complex | Support integration of complex systems

systems

29 Design Assessment of design

30 Evolution control systems | Provide an automated support for coordinating the
efforts of ateam of prototype designers and manage
multiple versions of the designs they produce

31 Merger Provides automated prototype change-merging

32 Subsystems Rewrite subsystems

33 Software design Management software design

34 Design base Allow a persistent storage of prototype
development data

35 Translator Allow the translation from PSDL to Adacode

36 Scheduler Creates schedules for Ada code

37 Compiler Compiles the source code

38 Execute system Executes al the Ada code for the currently open
prototypein the designer’s private workspace

39 Designer Design aprototype

40 User One of the potential stakeholdersin aproject

41 Prototype A sample for representing the requirements

42 Help Assist the user/software engineer when requesting
information about one of the menu buttons

43 Edit Allow the choice from a list of commands include
PSDL, Ada,, Requirements...

44 Essential A category of differentiation for the following
SEATooIs (user interfaces, editors, the execution
support system, the project control system, and the
software base)

45 Very useful A category of differentiation for the following
SEATOools (user interfaces, editors, the execution
support system, the project control system, and the
software base)

46 Useful A category of differentiation for the following
SEATooIs (user interfaces, editors, the execution
support system, the project control system, and the
software base)

a7 Conflict detection Allow and detect conflicts

58

Ref # | Feature Description

48 Warning Warns of any existing conflict

49 Design database | Contains the PSDL descriptions and working code

containing PSDL for all available reusable software components

50 Construction Allow the construction of aprototype

51 New Allows the user to create a prototype design

52 Quitting Allow to quit and close the SEATools program

53 Commit work Allows prototype design to be entered into the
database

54 Retrieve from database Allows the user to retrieve data from the database

55 Choice Allow the choice of aproject

56 PSDL User friendly tool that helps the user/software

engineer construct prototypes using a combination
of graphical and textual objects

57 Interface Invokes Transportable Applications Environment
Plus” (TAE+) to edit the prototype interface

58 Reguirements Allows designersto edit arequirementsfile

59 Ada Allows designersto edit Adaimplementation files

60 Caps default Allows designers to choose which text or Ada
editor will be used

61 Hardware model Lets designers check timing constraints relative to a

machine faster or slower than the machine that is
executing CAPS

62 Operating systems Allows models to account for operating systems
63 Assembler Allows models to account for compiler

64 Programming language Allows models to account for language

65 Computer systems Allows models to account for computer systems
66 Libraries Provides libraries

67 Editors Allows user to edit

68 PSDL specifications Track PSDL specifications

69 Executed code Track executed code

* Transportable Applications Environment Plus (TAE+) is a windowing package developed at the
National Aeronautics and Space Administration’'s Goddard Space Flight Center. TAE Plus provides either
Adaor C code to create the user interface modules.

59

Ref #

Feature

Description

70

Graphical objects (data
flow diagram)

Allow the construction of dataflow diagram

71 Textua objects Allow textual objects

72 Dataflow diagram Show Existing data flow diagram

73 Computational graphs Allow computational graphs

74 Finding Allow user to find graphs

75 Retrival Allow theretrieval of graphs

76 Graphical design Create graphical design

77 Edit graphical design Edit graphical design

78 View graphical design View graphical design

79 View code View code

80 Edit code Edit code

81 Library reused code Allow the use of a Library of reused code

82 Control constraints Control the process and output generation via a set
of conditions or predicates

83 Operators Allow the drawing of operators (circles) in a data
flow diagram

84 Streams Allow the drawing of data streams (directed lines)
in adataflow diagram

85 Terminator Allow the drawing of terminators (rectangles) in a
dataflow diagram

86 Timing constraints Allow the entry of Timing constraints

87 AdaSDE Is used via the Ada editor by the designer to view
and edit Ada code

88 Other text editor Used to view and edit texts and code

89 Vi Is used via the Ada editor by the designer to view
and edit Ada code

90 Emacs Is used via the Ada editor by the designer to view

and edit Adacode

Table 3.

SEATools Ontology List.

This ontology list is derived from the feature tree; the order given here of the

features is represented by the order of the features in the different layers of thetree. The

layers are read in a top down approach. The references are alocated to the features

60

horizontally from left to right layer-by-layer. See Appendix C for a full picture of the
feature tree structure of this potential ontology terminology.

D. COMMON CHARACTERI STICSOF THE TOOLS
Recall that features in a domain are of two types. common and variable.

Common features [GEYEQQ] are always part of a system in the regarded domain (a
feature present in all instances of a concept). Variable features are only part of some
systems. However, in this part of the analysis the am was to collect the common
characteritics for both tools (Rational RequisitePro and SEATools) that may be present

in other tools aswell.

We conducted an approach of reasoning and brainstorming about observations
and information generated by the feature models to select the commonalities between the
two tools and build a high level ontology representing these commonalities. We
identified some common characteristics which are features generated in the feature trees
as fundamental ones at an abstract level. These same generic features are likely to be
found in other software development tools. This makes the software development tool
ontology a“pilot” ready for further extension so that it may later include other software
development tools.

Hereisthe list of the common essential characteristics of the tools that allowed us
to build a high level ontology that will be further explained in the following chapter.

Ref # | Feature Description

1 Tool The tool intended to be anadyzed and to
incorporate its essential characteristicsinto an
ontology tailored to this purpose

2 Actor A particular role adopted by the user of an
application while participating in a use case

3 Stakeholders A person, group, or organization with a stake
in the outcome of an application that is being
developed

4 Developers The software engineers who develop a
software project

5 Designers The software engineers who design asoftware

61

Ref # | Feature Description
project

6 Architects The software architects for a particular
software project

7 Team The team involved in any software project

8 Activity Specify the activity, which is anything that
involves doing.

9 Communication Assurance thorough transmission

10 Management Assure control over a project or gpart of a
software project

11 Organization Allow the arangement of the software
requirements of any other information related
to a software project.

12 Sorting Allow the arrangement of a software project
information in a given order

13 Filtering Allow the removal of undesired information
via specific criteria

14 Synchronization Allow the software project stakeholders and
information to operate at the same rate and
time

15 Archiving Allow the archiving of particular documents
related to the activity

16 Maintenance Allow the establishment of the process of
repairing and enhancing an application.

17 Creation Allow the creation of components judged
necessary for the activity

18 Coding Allow Coding

19 Modification Allow changes

20 Verification Ensure that a software application is being
built in the manner planned

21 Artifacts Any kind of data, source code, or information
produced, gathered or used during the
development process.

22 Documentation Assure the documentation of every step taken

23 Statistics Numerica data

24 Database Provide a collection of arranged data for easy
and fast retrieva

25 Feedback Allow feedback

26 Efficiency Provide high quality by improving the process

27 Assure the relationships between the different

Links_Dependencies Treaca | information and requirements related to a
bility software project
28 Security Avoid risk and danger
29 Child Parent Assure and identify the child-parent

62

Ref # | Feature Description
relationships in the software project

30 Risk Allow the mitigation of a perceived threat

31 Safety Assure that the projects are hazard-free

32 Project Component Identify al the parts that make the whole
project.

33 Requirements Allow the obtaining of a complete statement

of what functionality, appearance, and
behavior are required of an application

34 Model A view of the design of an application from a
paticular perspective, such as the
combination of the application’s classes, or its
event-driven behavior

35 Use Case A sequence of actions, some taken by the
application and some by the user, which are
common in using an application

36 Library Building a collection of information and
materia related to a project

37 Prototype An application that illustrates or demonstrates
some aspects of an application that is under
construction

38 Test Assure the determination, the quality, and the

truth of a software project

Table4. Common Characteristics for High-Level Software Development Tools Ontology.

This list was the result of the analysis of the two ontologies lists representing
RequisitePro and The SEAToolss. It was generated after brainstorming about the more
frequent features that exist in almost all the tools. These features represent the high level

ones.

E CONCLUSION

In this chapter we presented and explained the domain analysis and identified the
essentia tools characteristics. For both RequisitePro and SEATools we described each
toal, explained our approach to analyze the features, and identified ontology lists for each
tool. Finally, we illustrated the common characteristics existing in both software
development tools. Accomplishing the previous steps leads us to the next step “building
the software development tool ontology.”

63

THISPAGE INTENTIONALLY LEFT BLANK

V. THE SOFTWARE DEVELOPMENT TOOL ONTOLOGY

A. INTRODUCTION

This chapter discusses and presents the software development tool ontology as a
collection of classes using the Unified Modeling Language (UML). The ontology is
intended to be used in conjunction with formal models of the software devel opment tools
domain (such as within an interoperability model of the domain), and thus it is important
that the language used to describe the ontology have formal semantics. Unfortunately,
such forma semantics are not provided for in UML. However, UML has become a
recognized and highly used standard for describing the relationships of objects. UML
also has a very large and rapidly expanding user community. Therefore, we propose to
use UML to illustrate the logical associations between key elements of the ontology (i.e.
class names and relationships), but will rely on Protégé to record any formal semantics

(such as constraints within or between classes).

B. OVERVIEW OF UML

The Unified Modeling Language (UML) helps in specifying, visudizing, and
documenting models of software systems, including their structure and design. UML
defines twelve types of diagrams [INTROZ2], divided into three categories. four diagram
types to represent static application structure; five diagrams to represent different aspects
of dynamic behavior; and three diagrams to organize and manage application modules:

Structural Diagrams include: the Class Diagram, Object Diagram,
Component Diagram, and Deployment Diagram.

Behavior Diagrams include: the Use Case Diagram, Sequence Diagram,
Activity Diagram, Collaboration Diagram, and Statechart Diagram.

Model Management Diagrams include: Packages, Subsystems, and
Models.

Among the UML diagram types that can be used to model the static and dynamic
behavior of a system, we have chosen to model our ontology as a static model consisting
of a class diagram to depict the classes in the domain and their relationships.
Additionally, we use Packages as parts of Model Management Diagrams as well. All

65

three ontologies are described as class diagrams and appear in figures throughout this
chapter.

The next three sections of this chapter present the UML representation of the
three ontologies given in the following order:
UML description of RequisitePro ontology
UML description of the SEATools ontology
UML description of the high level ontology
The fourth section illustrates the description of the inter -rel ationships between the
three ontologies represented using the UML notation. Different colors are used in
representing the UML description of the three different ontologies for the purpose of
identifying the elements of the different ontologies in a distinctive way, and to clearly
show their interrelationships. The representation of the relationships of three ontologies
follows the pattern established in Figure 13. The purple classes represent those classes
within the RequisitePro ontology; the yellow classes represent those of the SEATools
ontology and finally, the blue classes represent those of the high level software
development ontology.

High-level
ontology's Classes

RequisitePro's SEATools
Classes Classes

Figure 13. Relationship Between the Classes of the Three Ontologies.

C. UML DESCRIPTION OF REQUISITEPRO ONTOL OGY
Classes describe concepts in the domain. For example, a concrete class of
“Requirements” could be used to help represent later instantiated requirement objects.

Specific requirements become instances of this class. A class can have subclasses that

66

represent concepts that are more specific than the superclass. In practical terms,
developing an ontology includes:

defining classes in the ontology (as well as defining attributes of the
classes),

arranging the classes in a taxonomic (subclass—superclass) hierarchy,
identifying and noting relationships between classes,
establishing and noting any constraints between classes.

In the class diagrams, classes are represented by boxes with three parts. the name
of the class, the attributes of the class (specified by their name, type and visibility) and
the operations of the class (specified by name, argument list, return type and visibility).
For the purposes of annotating our ontologies in this chapter, we do not list either the
attributes or operations in our ontologies (these details are included in the full Protégé

data base of the ontology classes).

The following figure (Figure 14) represents the UML description of RequisitePro
ontology. This representation consists of a package of the requirement management tool
RequisitePro. The package contains a class diagram consisting of the main classes of the
tool from an Extensbility User Interface (RequisitePro's Application Programming
Interface (AP1)).

67

RequisitePro

< <
E—| F—
|—o

Figure 14. UML Description of RequisitePro Ontology.

This representation of a global class diagram is intended to show the relativ e size
and composition of the entire ontology; it will be further shown in smaller diagrams
providing greater detail.

1. Class Diagram: Application
The Application object (see Figure 15) represents the main object of the

RequisitePro Extensibility Interface that provides access to many other objects. Among
the other objects present in this class diagram, there is Errors object that holds
information about current and previous errors that occurred during the current
Component Object Model (COM) session and a Projects abject (a collection of opened
Project objects). The GUI object is used by the RequisitePro application to access GUI
diadog boxes, the Catdog object is a collection of projects accessible in RequisitePro.
The RegProCollection object is a generic collection object. Note that three objects

68

(Properties, Property, and RegProCollection) exist in the class diagram and are not
related to other objects.

Application

f

Projects Server I nfor mation Errors GUI Catalog
Project Properties ReqProCollection Cataloltem

T

Property

Figure 15. Class Diagram: Application.

This UML representation shows the different classes introduced in the super-class
Application. These classes include the Projects, GUI, Properties...etc. The relationships
between project, projects, and application are the most important classes in this diagram.
These relationships illustrated in the ontology help achieve a degree of success in
engineering software systems (partially determined by how easily they are developed).
Furthermore, the ontology may standardize software projects when viewing a project as a
container for documents subjec ted to revision management and archiving. The kind of
standardization reduces duplication of effort, enhances interoperability and promotes
cooperation by developing a common communication library for al software projects.

2. Class Diagram: Package

The Package object is an object that represents a RequisitePro package. Packages
can contain other packages, requirements, views and documents. Package implements
the iPackage and the iPackageable interfaces. Among the other objects present in this

69

class diagram, we have: the Views object (a collection of View objects), the View object
(an object that represents a single view), the Documents object (a collection of Document
objects), the Document object (an object that represents a single RequisitePro document),
and Requirement object (an object that represents a RequisitePro requirement).

Project

Requirements RootPackage Documents Views
Requirement Package iPackage Document View
iPackageable

Figure 16. Class Diagram: Package.

Figure 16 shows the different classes included in the UML class diagram
Package. The relationships between RootPackage, Package, iPackage, and iPackageable
Objects represent the central concepts resulting from this class diagram. The
RootPackage object represents the container and the starting point for al user defined
packages. The RootPackage object implements the iPackage interface.

3. Class Diagram: Project Data

This class diagram introduces the objects representing the Project Data. Besides
the objects described previoudly in the class diagrams that preceded this one (Documents,
Views, RootPackage Objects, etc...) thereisaDiscussionLinks Object (a Collection class
returned by a Discussion object’'s DiscussionRequirements, DiscussionUsers, and
DiscussionGroups properties). A method of the DiscussionLinks class will return a

requirement, user, or group key based on which discussion property returned the
70

DiscussionLinks collection. The RequirementBucket object is an object-oriented
container in which logicaly grouped requirements can be collected, stored, and
transported as asingle unit. It is one of the essentia objectsin the class diagram because
this kind of organizer (whether for requirements collection, requirements transfer, or
documentation) is designed to facilitate the dissemination, communication and use of
information by multiple producers and users. Most interoperability problems are caused
by data interpretations, and inconsistent assumptions. However, by fitting data into the

ontology we can tackle these challenges.

RootPackage Project Requirements
— - @ e m— ———
Documents Queries Views Revisions Discussions Rda‘ed‘F;;(:JSeuCon
Dociment Query View Revision Discussion Rda!ed:’er;(){mcon
—-

T

Revisions

Responses DiscussionL inks

! ;

Revision

Response RequirementBucket

Figure 17. Class Diagram Project Data.

Figure 17 illustrates the different classes that exist in the class diagram Project

Data. The reationships between Views, Revisions, Discussions, Queries, and
71

Documents are the most important relations in the diagram. These relationships provide
an ability to create links between software project artifacts and trace the established
relationships, which fulfill the main goa of the ontology in alowing better
understandability among al software project stakeholders in a unified framework
applicable for any software development tool. Additionally, these are the very important
artifacts that we want to forward/exchange and transfer between software devel opment
tools.

4, Class Diagram: Project Structure

The RequisitePro Extensibility Interface supports full project structure control,
including creation, modification, and deletion of document types, requirement types,
attributes, and list items. In addition, the full control of project security allows usersto
define groups, users, and permissions for all objects. The Extensibility | nterface allows

users to open multiple projects at one time.

72

Project

DocTypes ReqTypes
DocType ReqType

T

Attrs

T

Attr

T

Listltems

T

Listltem

Figure 18. Class Diagram: Project Structure.

Figure 18 illustrates the different classes that exist in the class diagram Project.
The relationships between the objects emerge from this class diagram. A categorization
of the project is very important in the ontology because it allows the organization and the
traceability of requirement details in order to ensure the proper resources are committed
to the project during the requirements development phase. Attributes provide a means to

73

define different types of requirements by establishing information relationships between
multiple documents, assigning attributes to the information, such as task assignment, and
priority and status. All requirements are not created equa nor can it be expected that al
requirements have the same attributes —the “attributes’ classes alow us to define the key
atributes of a type of requirement in a project. The project structure as viewed by
RequisitePro is very important from an interoperability standpoint.

5. Class Diagram: Project Security

The Project Security class diagram shows the different objects related to the way
in which RequisitePro establishes and maintains the security features of a pr oject (who
can modify what, and when). These objects include the Users object (a collection of all
User objects for a given project), the User object (an abject that represents an authorized
RequisitePro user), the Groups object (a collection of Group objects), the Group object
(an object that represents a RequisitePro security group, the Permissions object (a
collection class containing individual permission objects), and finaly the Permission
object (an object that holds information about a given group’ s permissions for attribute,
document type, list item, or requirement type data).

74

Pr oj ect

Users Groups
User Group

Per missions

!

Per mission

Figure 19. Class Diagram: Project Security.

This figure represents the different classes that provide aspects of Project
Security. These classes show the dif ferent parts involved in establishing the security and
permissions framework within RequisitePro such as “groups’ and “users’, as well as
“permissions.”

6. Class Diagram: Requirements

The Requirements object is a collection of Requirement objects, (an object that
represents a RequisitePro requirement). These in turn consist of Revisions, Attributes
(AttVaues), and Relationships.

75

Requirements

T

Requirement

Revisions

———
AttValues Relationships
AttrValue Relationship

Revision

T

ListltemValues

T

ListitemValue

Figure 20. Class Diagram: Requirements.

Figure 20 represents the different classes that exist in the class diagram
Requirements and represent its subclasses such as Revisions, Attribute values, and
Relationships. RequisitePro is a requirement tool and its most important artifact is
requirements. Moreover, this class diagram gives the ability to get, change, verify, add,

and delete requirements.

Since one of the goals of the ontology is to provide interoperability between
different software development tools, establishing a framework for reviewing
requirements change and establishing appropriate relationships is essential and must be

76

accounted for in the ontology. Moreover, the ontology will provide opportunities for

users to compare the vocabulary of different tools for better results.

D. UML DESCRIPTION OF THE SEATOOLS ONTOL OGY

We used the “Together” software to reverse-engineer the SEATools source code
and obtained the UML class diagrams shown in Figure 21. Thisis just a subset of the
overall class diagram for SEATools. The mgjor structure of the SEATools ontology as
presented in its UML Description consists of four Packages (PSDL, GraphEditor,
PSDLBuilder, CapsMain) that divide and organize the SEATools mode in much the
same way that directories organize file systems. Each package corresponds to a subset of

the model and contains, classes, aswell astheir relationships.

Decompoasition into packages is not the basis for a functional decomposition; each
package is a grouping of elements according to purely logicd criteria generated from the
SEATools source code. The four packages are themselves encapsulated into the
SEAToodls package as shown in Figure 21. This representation of SEATools encloses
four sub-Packages containing different class diagrams accounted for in building the
SEATools Ontology. Figure 21 is intended to show the relative size and composit ion of
the entire SEATools ontology and will be further illustrated in smaller diagrams showing

more detail in the following sections.

The most important point to glean from Figure 21 is that each package has a
specific purpose. For instance, the package Prototype System Description Language
(PSDL) provides a uniform conceptual framework and high-level system description.
The GraphEditor package alows the user to interactively create and modify PSDL
graphs. The CapsMain package presents the basics of the SEATools development

environment.

77

SEA Tools

PSDL GraphEditor
DtaFlowComponent PsdiTime
|—a>
Edge Vertex
VertexProprieties EdgeProprieties
DataTypeObject DataTypes TimerOp
ExceptionGuard OutputGuard TypeOp
PSDL Builder CapsMain
CapsResultList CapsAdaFileList
Psd|Builder Constant Token
CapsMainWindow
PsdiBuilder / \
ExecutePr ototype SchedulePrototype TranslatePrototype CompilePrototype

l

]

]

Figure 21. UML Description of the SEATools Ontology

78

1. The PSDL Package

The PSDL Package contains various parts each of which comprises the
components of a PSDL Graph (consisting of Vertices, Edges, etc...). Dataflow
represents discrete transactions while PSDL Timers (a software stop watch), and others
such as timer ops (for invoking a text window to view or edit the operator's timer
operations) represent the timing operations and constraints in a PSDL Graph. Output
Guards (a feature for invoking atext window to view or edit the operator’ s output guard)
are used to selectively suppress outputs from operators. Exception Guards (a feature for
invoking a text window to view or edit the operator's exception guards) are also
conditions that are evaluated when exception data streams are created. Both of these help

to implement real-time timing requirements in a software system.

PSDL
DtaFlowComponent PsdITime
Edge Vertex
DataTypeObject DataTypes TimerOp
ExceptionGuard OutputGuard TypeOp

Figure 22. The PSDL Package.
79

Figure 22 shows the PSDL Package containing different classes and a data flow
component class diagram. The prototype is the most important part of SEATools, and
PSDL is the powerful artifact behind prototyping. PSDL manages dataflow components
(edges and vertices). PSDL is designed for specifying hard real-time systems. It has a
rich set of timing specification features and offers a common baseline from which users
and regquirements engineers describe requirements. The formalism of PSDL descriptions
of the prototype are precise and unambiguous and promote better interoperability and
understandability. The data flow diagram augmented with control and timing constraint
and PSDL file (together with timing constraint information) allow the user to model the
different aspects of the prototype consistent with the requirements. Moreover,
information from the prototypes (data flow diagrams) will be used by other software
development tools via the ontology. Finaly, it is worth saying that this part of the
ontology gives us access to the prototype

2. The Graph Editor Package

The Graphic Editor is one component of the SEATools user interfaces. It allows
the interaction with other SEATools processes, supplies an interface with other software
toals, and alows a user to manipulate PSDL graphs.

80

GraphEditor

VertexProprieties EdgeProprieties

Figure 23. The Graph Editor Package.

The Graph Editor Package contains two classes: Vertex Proprieties class and
Edge Proprieties Class. These two classes are among the most important classes of the
ontology since they specify the key properties of the two major components (vertices and
edges) of aPSDL prototype. These components tend to provide concise and meaningful
implementation of any requirement presented by the user. They may be trandated to
other toolg/prototypes that implement such requirements differently. Moreover, the
graphical editor is used to draw dataflow diagrams annotated with nonprocedural control
condraints as part of the specification of a hierarchically structured prototype.

81

3. The PSDL Builder Package

The PSDL Builder package is the third sub-package in the SEATools ontology. It
encapsulates the main classes involved in building a PSDL prototype. The classes are as
follows: PSDLBuilderConstant, Token, and PSDLBuilder.

PSDL Builder

PsdIBuilder Constant Token

]

PsdIBuilder

Figure 24. The PSDL Builder Package.

This Package contains a PSDL Builder class diagram. It shows three kinds of
relationships existing between the classes. The diagram illustrates the relationship
between PsdiBuilder class and PsdIBuilderConstant class. The PsdlBuilder class is
associated uni-directionally to the Token class. Note also that the latter class presents
two self-delegations. The class PSDL Builder alows the development of the PSDL
model; the class “token” provides Ada symbols that are reserved symbols used by the

82

compiler for performing operations and calculations. Again different techniques are used
in other software development tools, and by fitting these essential features (together with
other techniques used by other tools for similar purposes) into our ontology,
interoperability will be achieved and the software development tools will be able to trade
and properly trandate similar information.

4, The Caps Main Package

The Caps Main Package describes various classes related to prototypes introduced
through the Caps Man Window. This sub-package introduces the classes
(SchedulePrototype, TrandatePrototype, CompilePrototype, ExecutePrototype) needed to
transform the prototype from a simple graphical representation of the system into an
executable software prototype. The TranslatePrototype class trandates the prototype
through a trandator designed to generate code that binds components that have either
been extracted from the software base or have been custom-built. The SchedulePrototype
class invokes a real-time scheduler that generates two types of schedules depending on
the priority and type of the prototype's timing criteria and constraints. The
CompilePrototype and the ExecutePrototype classes attempt to compile the prototype
(i.e, Ada modules and programs) and to run an executable prototype system. The
execution support system consists of a trandator, a scheduler and a compiler to facilitate
the testing of the prototypes.

83

CapsMain

CapsResultList

CapsAdaFileList

CapsMainWindow

/

\

ExecutePrototype

SchedulePrototype

TransglatePrototype

CompilePrototype

]

]

]

ul

Figure 25. The Caps Main Package.

Figure 25 shows the class diagram of the Caps Main Window. These classes
address the problem of how to produce an executable prototype summarizing all the

requirements.

Different software development tools may generate distributed and

heterogeneous software projects that may work together via multiple communication

links and protocols. The prototyping classes created and used in the CapsMain Package

84

are important to the ontology so that exernal tools can create, modify and use reliable,
executable prototypes created in SEATools.

E. UML DESCRIPTION OF THE HIGH LEVEL ONTOLOGY

The high level Software Development Tool Ontology was constructed to be
applicable (and extensible) to any software devel opment tool and includes classesthat are
often found in software project development. Figure 2 shows the entire High Leve
Ontology; however, the ontology will be further illustrated in additional diagrams that
better show the relationships between all these classes.

o
I 1 I
AAAAA eor i
I I I I I I]
comniion | | e] [mases rean - St e owswns | [rrasscamenn] oy st
[I I 1
z =

Figure 26. UML Description of the High Level Ontology.

Essentially there are three mgjor parts to the ontology: artifacts (dealing with al
objects developed in a software project), actors (stakeholders and teams involved in a
software project), and activities (required throughout the life-cycle of a software project
from management to communication). These main parts will be introduced in greater
detail in the next sections.

1. Class Diagram: Artifact

The Class diagram Artifact expresses, in a general way, the static structure of the
artifacts that a software development system (software project components and

85

characteristics) might producein terms of classes and rel ationships between those classes.
Just as a class describes a set of objects, an association describes a set of relationships;
objects are class instances, and links are association instances. This class diagram does
not express anything specific about the links of a given object, but it describes, in an
abstract way, the potential links from an object to other objects.

Artifact

. - LinksDependency . -
Documentation Statistics r sy Database ProjectComponent Efficdency Feedback
Security ChildParent Risk Safety
Code Prototype Test Requirements Model UseCase Library

Figure 27. Class Diagram Artifact.

Figure 27 shows the different classes introduced in the super-class “Artifact.”
These classes include the documentation, links-dependency-traceahility, ...etc. Thisis
not intended to be an all inclusive list of artifacts; this diagram can be extended as new
artifacts (from other tools) are integrated into the ontology. In including these artifacts
(with their structures) in the ontology we are likely to integrate an important section of
knowledge shared by various software development tools (expressed in different words).
Artifacts are the main things we want to trade between tools, that is what makes them so

important.

86

2.

Successful software development tool use requires actively managing different
interactions (activities). All the objects derived from the Activity class are integral parts
of the software development tools. Any “activity” in a software development tool
environment is undertaken with the aim of directly or indirectly producing (or improving)

Class Diagram: Activity

a software development artifact.

Activity

T

Communication

Management

JAN

Maintenance

Organization

Creation

Verification

Modification

i

Sorting

Filtering

Synchronization

Archiving

This class diagram shows many of the common “activities’ represented by classes
that can be used in software project development. This is not intended to be an all
inclusive list of activities; this diagram can be extended as new activities (from other

tools) are integrated into the ontology. As aresult, the integration of these activities into

Figure 28. Class Diagram Activity.

87

the ontology will facilitate interoperability with the different tools using diff erent
structures.

3. Class Diagram: Actor

The class diagram Actor represents dl the people involved in software project
development. The structure describes Actor as a class, where the sub-classes
(Stakeholders and team) are derived fromit. Moreover, the classes devel opers, designers,
and architects are themselves derived from the class stakeholders.

Actor

Stakeholders Team
Developers Designers Architects

Figure 29. Class Diagram Actor.

This Class diagram shows all the classes of people (or teams of people) that may
participate or beinvolved in any software project development. The main conclusion that
would be drawn from this diagram is that the class Actor and its subclasses form themain
group involved in any software project. By integrating them in our ontology, we make
them explicit and we avoid confusion and ambiguity.

F. UML DESCRIPTION OF THE INTER-RELATIONSHIPS BETWEEN
THE THREE ONTOLOGIES

We identified the characteristics of each individual software development tool
that must be accounted for within the higher-level ontology. In the following class
diagrams we introduce views as a way of illustrating the inter -relationships between the

88

two individual tool ontologies and the high-level ontology. These inter-relationship class
diagrams form the basis for establishing interoperability between the tools using Y oung's
OOMI methodology [YOUNOZ].

1. Class Diagram: Communication

When properly managed, a Software project usualy has a communicated set of
processes that address the daily activities of the project. As a result, al the people
involved in any software project understand their roles and responsibilities and how they
fit into the big picture, thus promoting the efficient use of resources. Each software
development tool has its own way of communication, and the following diagram
illustrates our view of the interoperability between the three ontologies (RequisitePro,
SEATools and high level) with respect to communication.

Figure 30 shows the interoperability among the three ontologies (RequisitePro,
SEATOools, and the high level one) at the level of communication. We view the inter -
relationship between the three ontologies in communication as a generalization. Since
we adopted only classes in the UML descriptions of our ontology, we assume that the
atributes, operations, relationships and constraints defined in the superclass

Communication are fully inherited in the subclasses.

8¢

Communication

Response

Figure 30. Class Diagram: Communication.

2. Class Diagram: Prototype

One of the best ways to test the usability of a product while there is till time to

9C

Queries Discussions CapsResultList CapsAdaFileList
Query Discussion CapsM ainWindow
Responses DiscussionLinks

make changes is to develop a prototype. The ideais to build a mock-up of the product,
which simulates the look and feel of the interface and brings many of the complex
interaction problems out. Review of the prototype enables users, pr oject managers, and
developers to agree on how an application should look. The following class diagram

describes our view of the inter -relationship between the three ontologies at the prototype

Prototype

!

DtaFlowComponent PdITime
Edge Vertex
TimerOp ExceptionGuard PutputGuard VertexProprieties EdgeProprieties

Figure 31. Class Diagram: Prototype.

Figure 31 shows the interoperability among the three ontologies (RequisitePro,
SEATools, and the high level one) at the Prototype level. Although, note that there is no
matching ontology class from the RequisitePro ontology for Prototype.

The generaization relationship expresses the fact that the elements of the
Prototype class are also described by details of the Vertex and Edge sub-classes. The
open arrows symbolize the navigation property of associations. Associations describe the
network of structural relationships that exist between the different classes, and give birth
to links between the objects that are instances of these classes.

3. Class Diagram: Creation
The class diagram Creation describes the inter-relationships between the three

ontologies when dealing with the creation of any software project. The prototype is also

considered as an archetype of aproject. Therefore, its creation is also considered.

9

Creation

ExecutePrototype SchedulePrototype TrandatePrototype CompilePratotype

]

Figure 32. Class Diagram: Creation.

Figure 32 shows the interoperability among the three ontologies (RequisitePro,
SEATOoadls, and the high level one) at the Creation level. Also note that there is no
matching ontology class from the RequisitePro ontology for Creation. We adopted the
same view as before, and we considered the main inter-relationships as a generalization.

4. Class Diagram: Actor

The following diagram depicts our view toward the inter-relationships existing
between the three ontologies generated from the superclass Actor.

Figure 33 shows the interoperability among the three ontologies
(RequisitePro, SEATools, and the high level one) at the Team level. Although, note that

there is no matching ontology class from the SEATools ontology for Actor. The choice
of “Users’ as asub-class of designers was derived from the RequisitePro structure.

92

Actor

Stakeholders Team
[|
Developers Designers Architects
Groups
Users
Group
User

Figure 33. Class Diagram: Actor.

5. Class Diagram: Documentation

The role of documentation in any project development is critical. Specifications,
designs, business rules, inspection reports, configurations, code changes, test plans, test
cases, bug reports, user manuals, etc. should all be documented. The following diagram
describes one way of representing the inter -rel ationships between the three ontologies for
the class Documentation.

Figure 34 shows the interoperability among the three ontologies (RequisitePro,
SEATools, and the high leve one) at the Documentationa level. Although, note that
there is no matching ontology class from the SEATools ontology for Documentation.
Note that the generaization is “multiple’, and several arrows are drawn from the

subclasses to the various superclasses.

93

Verification

Documentation

Maintenance

N\

T

Documents

Errors

JAN

Document

Revisions

Revision

Figure 34. Class Diagram: Documentation.

6. Class Diagram: Requirements
Requirements are the details describing an application's externally perceived

functionality and properties. The following diagram summarizes the UML description of

the inter -relationships between the three ontol ogies toward Requirements.

<Y

Requirements

L‘A

Requirements

T

Requirement

¢

Revisions

AttValues

[

Revision

T

AttrValue

T

ListltemValues

!

ListltemValue

Relationships

!

Relationship

Figure 35. Class Diagram: Requirements.

Figure 35 shows the interoperability among the three ontologies (RequisitePro,
SEATOools, and the high level one) at the Requirements level. Again, note that there is no

matching ontology class from the SEATools ontology for Requirements.

95

The

requirements of the high-level ontology represents the high level class from which
derived the subclass RequisitePro requirements.

7. Class Diagram: Model

A comprehensive model integrates existing techniques and standards for
modeling software products, processes, and people. We have anayzed the modd to
identify the key relationships that integrate the three ontologies. Our effort resulted in the
following diagram that focuses only on the software project as a main subclass of the

superclass model.
M odel
L}
Pr oj ect
T
DocTypes ReqTypes
T T
DocType ReqType
T
Attrs
T
Attr Listltems Listltem

Figure 36. Class Diagram: Moddl.

Figure 36 shows the interoperability among the three ontologies (RequisitePro,

SEATodls, and the high level one) at the Model level. Note that there is no matching
96

ontology class from the SEATools ontology for Moddl. Recall that while the PSDL
prototype is considered a “model”, it was integrated with the higher ontology through
“Prototype’. The main point to get out from this class diagram is the generaization
relationship that exists between model and project.

8. Class Diagram: Security

The security of software projects represents an essentia step in assuring its
success. The following diagram describes the inter -relationships between the three

ontologies for security.

Security

ZAN

Per missions

T

Per mission

Figure 37. Class Diagram: Security.

Figure 37 shows the interoperability among the three ontologies (RequisitePro,
SEAToals, and the high level one) at the Project Security level. The Permissions class
generated by the UML description of RequisitePro ontology is considered as a subclass
of the superclass Security generated from the UML description of the High-level
ontology. Note that there is no matching ontology class from the SEATools ontology for
Security.

G. SUMMARY
In this chapter we have presented each individual tool ontology, the high-level
ontology, and the inter-relaionships between these ontologies usng UML. We

addressed the complex issues of defining class hierarchies. However, there is no single

97

static ontology for any domain. Ontology design is a continuing, creative process. This
Software Development Tool Ontology was developed as part of the establishment of a
Holistic Framework for establishing interoperability of heterogeneous software
development tools and models. Its scopeis limited to those core features required for the
software project development. The development of the ontology has taken account of
other external ontology devel opments whenever possible; however, the goal was aways
to be compatible with existing ontologies where possible. This ontology will be further
refined and extended throughout the future as new software development tools are

integrated into the ontology.

98

VI. CONCLUSIONS

Software development tools are heterogeneous software systems that present
many challenges in interoperability. These challenges stem from complex issues on the
choice of the types of information that might be able to be captured and the relevant
knowledge structure that needs to be presented in an optimal way. We observe that
disparate backgrounds, tools, and techniques are a maor barier to effective
communication among people, organizations, and/or software systems. We show how
the development and implementation of an explicit account of a shared understanding
(i.,e. an “ontology”) in the software development tools area, can improve such
communication, which in turn, can give rise to greater reuse and sharing, interoperability,

and more reliable software.

Among the foundation and related works that formed a basis for this ontology,
Young [YOUNO2] proposed an object-oriented methodology for establishing
interoperability between heterogeneous systems that alows interaction between their
different objects. He proposed resolving the differences between existing systems via the
establishment of a Federation Interoperability Object Model (FIOM). The establishment
of such object federation between existing process model together with the integration of
the federation with the extended evolution model, will generate an availability of inputs
and outputs between subordinate models.

The issues and challenges posed by the heterogeneity of software development
tools were addressed by identifying and defining the essential characteristics of two
software engineering tools: a Requirement's Engineering Tool (Rational Software
Corporation's RequisitePro), and a software prototyping tool (Software Engineering
Automation Tools (SEATools)), developed by the NPS's software engineering group.
The approach undertaken was to construct a “pilot” ontology that might be extended in
the future to include other software development tools. The essential idea was to capture
the commonadlities between these two tools and express them in such a way that would

promote interoperability and enhanced communication.

99

The approach to this portion of the research was to analyze the structure, in puts,
and outputs of the two individual tools, perform a domain anaysis (of this subset of
tools) and produce a feature model of that domain. Following from this analysis was the
task of identifying the characteristics of each individua software develop ment tool that
must be accounted for within higher -level ontology.

The ontology that was generated in this research was influenced by the future goal
and intended use of the ontology. In this case, the intended use was to establish
interoperability between al software development tools (with a near-term goa of
establishing interoperability between two specific tools). These two tools were not
chosen arbitrarily. The future purpose of the ontology biases the choice of the particular
set of features that are analyzed. The future purpose biases the organization of the
domain of interest by highlighting commonalities and resemblances needed for the given

purpose.

The choice of a proper ontology for the software development tools was very
important factor in accomplishing the task of interoperability building and structuring, far
beyond theissue of the representation of the inventory of the software development tools
features. All the following factors were taken into account in developing the
methodology adopted in the development of the ontology:

The Role of the Ontology

The mgjor role of the software development tool Ontology is to act as a
communication medium between different software development tools and people
(including users, developers and all the stakeholders) across any software project
development environment.

Scope

Considerable time and effort was devoted to deciding the scope and boundaries
for the software development tool ontology. We began by brainstorming to identify as
many potentially important features as possible. This produced a totally unstructured list
of words and phrases corresponding to a wide variety of features relevant to software
development tools. These were then grouped into various areas and functionalities such
that there was more similarity in meaning and a need to refer to terms within an area than

100

between different areas, e.g. Tool, Activity, Actor, and Artifacts. Within each work area,
the terms were assigned priorities indicating the importance of including them in the
ontology. For each feature, terms were chosen depending on the task assigned to each
feature, and definitions given.
Choosing Features and Terms
The terms in the software development tool Ontology have been chosen as far as
possible to match the natural use of English words by people managing software projects
and using software development tools. This is often difficult. For a term to be used in
the ontology, the meanings were specifically defined.
Specification of the Ontology
We defined the classes and the class hierarchy using two approaches (top-down
and bottom-up approaches)

A top-down development process that starts with the definition of
the most general concepts in the domain and subsequent
specialization of the concepts. For example, we started by creating
classes for the general concepts of each super -class such as
“requirements.” Then we specialized the super -class by creating
some of its subclasses.

A bottom-up development process that starts with the definition of
the most specific classes, the leaves of the hierarchy, with
subsequent grouping of these classes into more general concepts.
For example, we start by defining classes “sort” and “filter.” We
then create a common super -class for these two classes-organize-
which in turn is a subclass of “activity.”

Figure 38 below shows the representation of the Protégé representation of the
high level Ontology. The three main classes (Artifacts, Actor, and Activity are found at
the top leve of the ontology).

101

Middle

level

Actor, Activity, Artifact are the more general features a form the top level.

The methodology we used to arrive at the software development tool ontology is
as important as the ontology itself and represents one of the major accomplishments in
this Thesis. While the ontology will determine whether the interoperability ontology for
the two softwar e development tools (Rational RequisitePro) and Software Engineering
Automation Tools (SEATools) is appropriate, the methodology will ensure that the

7 gy i ZOMIRT T

Project Edil Window Help

Lea =R

- -

suer..v |V €| 8%

Felatinnship
<) Tonl al

’C- Slatistics

Efficiency
'..I.n*«s_Elepsnd?nclas_?au?a
L) Brcunty

C/ Database

C)Fpedback
\‘ﬁl
L

J'C'Euuumuril ‘ |
&l |

TRl
(C) Eafe

) Brmbrim,
i

[T aT —

102

(C) Child_Parent 4 —

1 [1] ||
.I.-" """" T ¥ T |
| =]
| Superclasses | +|

= (C) AglD |
& ﬁchvﬁ@k ;
g - = Top level

Lower level

Figure 38. The Different Levels of the Software Development Tool Features.

Security, risk, and safety are some of the most specific classes in the hierarchy and thus
are at the bottom levdl.

ontology can be later extended with the inclusion of additional tools. The Software
Development Tool Ontology should not be considered static; it is an evolving definition
of terms. It will be further refined and extended as needed to integrate other software
development tools into the ontology. The ontology will be of interest to whoever is
interested in improving the interoperability and improve the communication between
software project stakeholders

The contributions presented in this thesis are the following:

Development of a methodology based on feature modeling to identify the
essentid characteristics of software development tools applicable to other
software devel opment tools.

The building of a “pilot” Ontology for the domain of software
development tools using “ Protégé 2000".

Identification of the commonalities between two specific development
tools’ (Requisite Pro an SEATools).

Findly, it is important to note that there is no single static ontology for the
software development tool domain nor did we attempt to define one. The ideas that we
present here are the ones that we found useful in our own ontology-development
experience leading to the beginnings of an ontology that may one day establish the
interoperability of al software development tools.

103

THIS PAGE INTENTIONALLY LEFT BLANK

104

APPENDIX A. REQUISI TEPRO FEATURE TREE

The feature diagrams for the following tools: RequisitePro requirements
management tool and the Software Engineering Automation Tools (SEAToolS) serve as
an exploitation of the approach of feature modeling in a constructive way to show the
eventual interoperability between these two software engineering tools. The choice of
these tools was tailored by the fact that this subset includes both a commercial and
research tool and represents substantial elements of the software development process
itself. The feature tree is a representation of the essential features for each software

development tool, part of this research.

In Figure 39, the RequisitePro feature tree represents the entire tools' features.
This tree will be further showed in more detailed subsets in the following parts.

105

Figure 39. RequisitePro Feature Tree.

106

RequisitePro

Requirements Non-functional
Management analysis features
Project Teams Documents Control Report - Ta”";;l“";ﬁg”"y Security
management management management requirements generation Treacability

Figure 40. High-Level RequisitePro-Subset of the Feature Tree.

Figure 40 shows the subset of RequisitePro representing the three parent features
that will be themselves divided into some other features. The figure shows that these
main high-level are considered mandatory features according to their essential roles.

107

®
Project
management
C
~ 19
Set up new . . .
oroject Project revision delete project
®
provide Renort provide Manual Automatic
standard project]| atei‘;ics isolated || Revision of || Revision of
template database projects projects

Figure 41. Project Management RequisitePro Feature Tree' s Subset.

Figure 41 notes the existence of features showing the possibility alowed by the
tool to set up a new project, or review project, or set up project and review at the same
time. However, there are five optional features (set up new project, project revision,

delete project, manual or automatic revision of projects). The three other features are
mandatory ones.

108

Teams
management

Allow interaction
with stakeholders

Unify teams

Allow better communication
through the web component

Discuss and
query

Information

Notify teams

Provide
synchronizatio
n

Provide
consistency

Record
comments

Understandabili
ty

Efficiency Effectiveness

Figure 42. Teams Management RequisitePro Feature Tree's Subset.

Figure 42 shows the detailed subset of the RequisitePro feature tree illustrating

the essentia features generated by the teams management feature.

109

e
Documents
management

Customize the Ease document's
documentation access

Maintainability
of documents

Review documents
through dialog box

Archiving Allow typing Detect changes save don't save

Figure 43. Documents Management RequisitePro Feature Tree' s Subset.

Figure 43 illustrates the detailed subset of the RequisitePro feature tree

representing the essentia features generated by the documents' management feature.

110

Control
requirements

Create
requirements

Set up new relocate Distinguish
requirements previous requirements
requirements

Define Save
requirements | requirements

Requirements
coverage
analysis

View approved Label Uniquely
use-case temporarily identify

name

priority

difficulty stability

Figure 44. Control Requirements Subset.

Figure 44 shows the detailed subset of the RequisitePro feature tree illustrating

the control requirements essential features generated from the requirement anaysis
feature provided by the tool.

111

Control
requirements

I

Edit
requirements

Verification Update
requirements requirements
Modify Add Delete
requirements requirements requirements

Provide
requirements
type

Assign
attributes to
requirements

Prioritize

h Give status Assess risk
requirements

Figure 45. Control Requirements Subset (Cont).

Figure 45 shows the rest of the detailed subset of the RequisitePro feature tree
illustrating the control requirements essential features gen erated from the requirement

analysis feature provided by the toal.

112

Report
generation

requirements

project reports metrics report

requisitepro
report

trend analysis

SoDA report report

static report

Figure 46. Report Generation RequisitePro Feature Tree's Subset.

The detailed subset of the RequisitePro feature tree illustrating the Report
Generation essential features generated from the requirement analysis feature provided by

the tool as shown in Figure 46.

113

Treacability

Monitor linking

Set up links

Cleared suspect

Automatic
setting to
suspect

Manual setting
to suspect

Automatic
cleared suspect
links

Manual cleared
suspect links

Figure 47. Treacability RequisitePro Feature Tree's Subset.

This tree illustrates the children features of one of the potential features provided

by the requirement management tool (RequisitePro).

mandatory set up links between the requirements or the mandatory cleared suspect links
or both together. However, the previous actions might be accomplished with an optiona

choice (manua or automatic) of one action among two.

114

The tool alows either the

e
Treacability

|

Track al the
requirements

Set
requirements
relationships

Organize

Identify high
level
requirements

Capture
requirements
changes

View chain of
relationships

Categorize
requirements

Sort Filt Understand Requirement Classify b dlassify b
Sor ilter impact of Review changes equirements y by y by
requirements [requirements changes maintainability types status

Figure 48. Treacability RequisitePro Feature Tree's Subset (Cont).

Figure 48 shows the rest of the detailed subset of the RequisitePro feature tree
illustrating the treacability of the requirements feature generated from the regquirement
analysis feature provided by the toal.

115

Tailors usability

Non-functional
features

. Security
options
L4 L
Word environment Integration with Remote usage via ! Investigate reasons
X] €9 20 Assure user security 9 Lock documents
and import wizard software tools web for changes

Reduce errors

Provide smooth
workflow

Allow finding
current version
of document

Understand the
context

Figure 49. Non-Functional Features as RequisitePro Feature Tree' s Subset.

Figure 49 illustrates a collection of a non-functional mandatory features provided

by the RequisitePro tool.

116

APPENDIX B. SEATOOLS FEATURE TREE

Appendix B presents the entire feature tree of the Software Engineering
Automation tools (SEATools). This feature tree is presented in detailed subsets. This
feature model defines a hierarchical structure over the set of features of the tool.

Figure 24 shows an entire feature tree representing the essential features of the
software engineering tool for developing prototypes of rea-time systems. SEATools is
an integrated collection of tools that are linked together to form a software development

environment.

117

Figure 50. SEATooIS s Feature Tree.

118

SEATools

manage
prototype

build prototype

user interface

Figure 51. High-Level SEAToolS -Subset of the Feature Tree.

Figure 51 shows the subset of SEAtools representing the three parent features that
will be themselves divided into other features. The figure shows that these main high-

level features are considered mandatory features according to their essentia roles.

119

manage
prototype

Develo stems
mg;gmng i Analyze Requirements
evolutionary prototype through evolutionary
prototypes

interaction of the

proposed system with constraints
its environment

Figure 52. Manage Prototype Feature Tree's Subset.

Figure 52 notes the existence of features showing the possibility allowed by the
tool to develop prototype or analyze requirements through the evolutionary prototype or
both functionalities at the sametime. The four features are mandatory and also divided to

some other low level features.

120

Develop
systems
-
Feasibility
study
L
differentiate support ent
. A assessm
SEA Tools integration of N
Components complex systems of desi an
essential very useful useful

computer aided

software others
engineering

Figure 53. Develop Systems Feature Tree's Subset.

Figure 53 shows the features derived from the parent feature “develop systems’.
These features are further differentiated by three categories. essential, very useful, and
useful. As an illustration, compilers, operating systems, assemblers, and programming

languages are essential tools or features. Editors and libraries are very useful tools or
features.

121

essential

compiler

operating
system

assembler

programing
language

Computer
Systems

Figure 54. Essential Feature Tree's Subset.

Figure 54 shows the subset “essential” of the develop systems’ feature tree. It

shows the four mandatory features or tools of the SEATools. Compilers, operating

systems, assemblers, and programming languages.

122

libraries

@
very useful

library of
reused code

other

Figure 55. Very Useful Feature Tree's Subset.

The subset “very useful” of the develop systems' feature tree shows the two
mandatory features or tools of the SEATools: Libraries, and editors. Meanwhile, the

library feature is further divided into two mandatory features: library of reused code and

other libraries.

123

editors

Develop
systems

pr oj ect
contr ol

evaluation merge
control systems g

confl '.Ct warns create PSDL
detection

Figure 56. Develop Systems Feature Tree's Subset (Con't.)

Figure 56 shows another branch from the features derived from the parent
“develop systems’. The diagram shows the essential features tailored to project control.
Asit is shown in the graph, these features are mandatory and essential.

124

build prototype]

automatically model modify existing
generate code editor prototype

add Refine systems delete

Figure 57. Build Prototype Feature Tree's Subset.

Figure 57 shows the features derived from the parent “build prototype’. The
diagram shows the essential features tailored to build a prototype for a software project.

Asit is shown in the graph, these features are mandatory and essential.

125

automatically

generate code

software
base
rewrite management software design
subsystems | | software design base database

design databasg
containing
PSDL

SW database

track PSDL
specification code

track executed

Figure 58. Automatically Generate Code Feature Tree's Subset.

Figure 58 shows the features derived from the parent “build prototype’. This
shows the essentia features tailored to automatically generate code. Asit isshown in the

figure, only two features are optiona to use to automatically generate code.

126

L g
automaticaly
generate code

execution
support
systems

execute

trandator system

compiler

O O L

trandate schedule compile execute

Figure 59. Automatically Generate Code Feature Tree's Subset (Cont).

Figure 59 is another part of the features generated from “automatically generate
code”.

127

rY
model
editor

/N

modify create

/\

designer user

construct modification

graphical P .
objects (data textual existing data computation

flow di agram) objects flow diagrams al graphs

ﬂ\

control timing
constraints operators str S constraints

terminator

Figure 60. Modd Editor Feature Tree's Subset.

Figure 60 shows the features derived from the parent “build prototype”. The
diagram shows the essentia features tailored to “model editor.”

128

user
interface

prototype

Figure 61. User Interface Feature Tree's Subset.

@ O
. expert
gr:é:;l;l cal system- design debugger browser
itor mode-
allows control
communi cation| communication
@
help edit

Figure 61 shows the features of the third high-level feature of the SEATools (user

interface). It shows the essentia features derived from the parent.

129

¢
prototype

: commit retrieve from
new quit work database choose
L L
create find retrieve modify

Figure 62. Prototype Feature Tree's Subset.

Figure 62 shows the essential features that may be used when working with
prototypes. SEATools allows the choice of prototypes, the creation of prototypes, the
modification, and the retrieve of prototypes.

130

. . Caps hardware
PSDL change interface requirements ada default model
gf;pe:r:al edit graphical || view graphical
design design design view code edit code

/\

OTHER TEXT
EDITOR

Vi Emacs

Figure 63 illustrates the different features derived from the feature “edit”. These
features are al (by chance) “mandatory-features’. Notice that the user has the ability to
"edit" numerous artifacts with SEATools as shown in the second level of thisdiagram. In
the fourth level, the feature “ other text editor” is divided into two mandatory features, but
their choice is alternative.

Ada SDE

Figure 63. Edit Feature Tree's Subset.

131

THIS PAGE INTENTIONALLY LEFT BLANK

132

APPENDIX C. CLASSHIERARCHY FOR ONTOLOGY-
REQUISITEPRO PROJECT

In this Appendix we illustrate a selective subset of the RequisitePro ontology
generated by Protégé-2000. This appendix starts by introducing all the classes that exist
in the RequisitePro ontology in class hierarchy tree. This hierarchy is automatically
generated by Protégé-2000. Following the hierarchy is a Protégé generated print-out of
the specifics of the important classes that we judged most useful to our interoperability
ontology. These classes are: Application, Projects, Project, Requirements, Requirement,
AttrValues, AttrVaue, Relationships, Relationship, Documents and Document.

133

o Application

= Projects
= Project
= RootPackage
= iPackageable
= Package
= jPackage
= Requirements
= Revisions
= Revision
= Requirement
= AttrVaues
= AttrValue
= ListltemValues
ListitemValue
* Revisions
= Revision
= Relationships
= Relationship
= Discussions
= Discussion
* Responses
= Response
= DiscussionLinks
= RelatedProjectContexts
= RelatedProjectContext
= Documents
= Document
= Reports
= Queries
" Query
= Views
= View
= RequirementBucket
= Groups
= Group
= Permissions
* Permission
= Users
= User
= DocTypes
= DocType
* ReqTypes
= ReqType
= Attrs
= Attr
= Listltems
Listitem
= GUI
= Errors

134

o

EMail

O O0OO0O0OO0OO0OO0OOo

Serverlnformation
Catalog
= Catalogltem

Properties

Property

ReqgProCollection
Connector
Context
CustomType
CustomTypes

Roseltem
Roseltems

CLASSAPPLICATION

TemplateSlots

Slot 1ame

Documentation

Ty pe

Cardinality

Action

Event Action(eEventType As enumEventTypes,
eObjectType As enumlinterfacel dentifiers, sGUID As
String, vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
of RegPro40.Application

Member

Any

0:1

LockProject

Function LockProject(vProjLookupValue,

[eProjL ookuptype As enumProjectL ookups]) As String
Member of RegPro40.Application Locks a specific
open project.

String

0:1

ProjectLockCount

Property ProjectL ockCount(vProjLoo kupValue,
[eProjLookuptype As enumProjectL ookups]) As Long
read-only Member of ReqPro40.Application Returns
the number of ouststanding locks on a project object.

String

0:1

PWD

Property PWD As String Member of
ReqPro40.Application Sets a default password

String

0:1

1sServerOpen

Property IsServerOpen As Boolean read-only
Member of ReqPro40.Application Determines whether
the server isrunning

Boolean

0:1

PublishAction

Sub PublishAction(eEventType As enumEventTypes,
eObjectType As enuminterfacel dentifiers, sGUID As
String, vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqPro40.Application

String

0:1

Personal Catalog

Property Personal Catalog As Catalog read-only
Member of ReqPro40.Application Returns the local
Catalog object

String

0:1

Version

Property Version As String read-only Member of
ReqPro40.Application Returns the version of the
application

String

0:1

135

Template Slots

Slot 1ame

Documentation

Ty pe

Cardinality

oCustomTypes

Property CustomTypes As CustomTypes read-only
Member of ReqPro40.Application Reserved for future
use.

String

0:1

CompareVersionNumber

Function CompareV ersionNumber(sNumberl As String,
sNumber2 As String) Member of
RegPro40.Application Compares version numbers

String

0:1

VersionRev

Property VersionRev AsLong read-only Member of
RegPro40.Application Returns the version revision
number

String

01

VersionMajor

Property VersionMajor AsLong read-only Member
of ReqPro40.Application Returnsthe major version
number of the application

String

0:1

VersionMinor

Property VersionMinor AsLong read-only Member
of ReqPro40.Application Returns the minor version
number of the application

String

0:1

OpenProjectProperties

unction OpenProjectProperties(vOpenProjOptionValue,
[eOpenProjOptionType As enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties Member of
ReqPro40.Application Opens a RequisitePro project
and returns its properties

String

01

Personal Catal ogltem

Property Personal Catal ogltem(vCatL ookupV alue,
[eCatL ookupType As enumCatal ogL ookups =

eCatlL ookup_Name]) As Catalogltem read-only
Member of ReqPro40.Application Returnsthe
specified catalog item from the Local catalog collection

String

01

IsProjectLocked

Property IsProjectL ocked(vProjLookupValue,

[eProjL ookuptype As enumProjectL ookups]) As
Boolean read-only Member of
ReqPro40.Application Determines if a specific project
has any outstanding locks.

Boolean

01

ExtendedHelp

Sub ExtendedHel p(sProduct As String, sSubTool As
String, sltem As String, sOperation As String, sQuery
As String) Member of RegPro40.Application
Launches Rational Extended Help

String

0:1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
RegPro40.Application Removes alock from a specific
project.

String

0:1

AreProjectsLocked

Property AreProjectsLocked AsBoolean read-only
Member of ReqPro40.Application

Boolean

01

CloseServer

Sub CloseServer() Member of ReqPro40.Application
Reserved

Any

0:1

EventRaiseEnabled

Property EventRaiseEnabled As Boolean Member of
ReaPro40.Application Returns or sets whether the

Boolean

0:1

136

Template Slots

Slot 1ame

Documentation

Ty pe

Cardinality

server raises server events

GetCurrentProjectUsers

Function GetCurrentProjectUsers(sRQSPath As String)
As Properties Member of RegPro40.Application

String

0:1

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As

enumProjectL ookups]) As Boolean read-only

Member of ReqPro40.Application Returns whether the
supplied GUID represents a valid lock.

String

0:1

CLASS PROJECTS

Template Slots

Slot 1ame

Documentation

Type

Cardinality

VersionMinor

Property VersionMinor AsLong read-only Member
of RegPro40.Application Returns the minor version
number of the application

String

0:1

CloseServer

Sub CloseServer() Member of ReqPro40.Application
Reserved

Any

0:1

VersionRev

Property VersionRev AsLong read-only Member of
ReqPro40.Application Returns the version revision
number

String

01

CompareVersionNumber

Function CompareV ersionNumber(sNumberl As
String, sSNumber2 As String) Member of
ReqPro40.Application Compares version numbers

String

01

Personal Catalog

Property PersonalCatalog As Catalog read-only
Member of ReqPro40.Application Returns the local
Catalog object

String

0.1

1sServerOpen

Property IsServerOpen As Boolean read-only
Member of ReqPro40.Application Determines
whether the server is running

Boolean

0.1

ProjectLockCount

Property ProjectL ockCount(vProjLookupV alue,

[eProjL ookuptype As enumProjectL ookups]) As Long
read-only Member of ReqPro40.Application Returns
the number of ouststanding locks on a project object.

String

01

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
RegPro40.Application Removes alock from a specific
project.

String

0:1

Action

Event Action(eEventType As enumEventTypes,
eObjectType As enuminterfacel dentifiers, sGUID As
String, vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
Member of RegPro40.Application

Any

01

137

Template Slots

Slot 1ame

Documentation

Type

Cardinality

PublishAction

Sub PublishAction(eEventType As enumEventTypes,
eObjectType As enuminterfacel dentifiers, sGUID As
String, VEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqgPro40.Application

String

01

OpenProjectProperties

unction OpenProjectProperties(vOpenProjOptionValue,
[eOpenProjOptionType As enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties Member of
ReqPro40.Application Opens a RequisitePro project
and returns its properties

String

0.1

Item

Property Item(vViewL ookupValue, [eViewLookupType
As enumViewLookups = eViewLookup_Key]) As View
read-only Default member of ReqPro40.Views
Returns the specified View

Any

01

VersionMajor

Property VersionMajor AsLong read-only Member
of ReqPro40.Application Returns the major version
number of the application

String

0.1

IsProjectLocked

Property IsProjectL ocked(vProjL ookupValue,
[eProjLookuptype As enumProjectL ookups]) As
Boolean read-only Member of
ReqPro40.Application Determines if a specific project
has any outstanding locks.

Boolean

01

LockProject

Function LockProject(vProjLookupValue,

[eProjL ookuptype As enumProjectL ookups]) As String
Member of RegPro40.Application Locks a specific
open project.

String

0:1

AreProjectsLocked

Property AreProjectsLocked AsBoolean read-only
Member of RegPro40.Application

Boolean

01

Count

Property Count AsLong read-only Member of
RegPro40.Views Returns the number of View objects
in the collection

Any

01

GetCurrentProjectUsers,

Function GetCurrentProjectUsers(sRQSPath As String)
As Properties Member of ReqPro40.Application

String

01

Personal Catal ogltem

Property Personal Catal ogltem(vCatL ookupV alue,
[eCatL ookupType As enumCatal ogL ookups =

eCatL ookup_Name]) As Catalogltem read-only
Member of RegPro40.Application Returnsthe
specified catalog item from the Local catalog collection

String

0.1

PWD

Property PWD As String Member of
RegPro40.Application Sets a default password

String

01

EventRaiseEnabled

Property EventRaiseEnabled As Boolean Member of
RegPro40.Application Returns or sets whether the
Server raises server events

Boolean

01

IsModified

Property IsModified As Boolean read-only Member

Boolean

01

138

Template Slots

Slot 1ame

Documentation

Type

Cardinality

of ReqPro40.Views Returns whether any of the Views
in the collection have been modified

Refresh

Sub Refresh() Member of RegPro40.View

Any

01

Version

Property Version As String read-only Member of
RegPro40.Application Returnsthe version of the
application

String

01

oCustomTypes

Property CustomTypes As CustomT ypes read-only
Member of ReqPro40.Application Reserved for future
use.

String

01

Revert

Sub Revert([bRevertAll As Boolean = False])
Member of ReqPro40.Views Restores objects to their
state when originally created

Boolean

0.1

Save

Sub Save() Member of ReqPro40.Views Saveall
Views that have changed to the database

Any

0.1

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only
Member of ReqPro40.Application Returns whether
the supplied GUID represents avalid lock.

String

01

ExtendedHelp

Sub ExtendedHel p(sProduct As String, sSubTool As
String, sltem As String, sOperation As String, sQuery
As String) Member of ReqPro40.Application
Launches Rational Extended Help

String

0.1

CLASS PROJECT

Template Slots

Slot nan e

Documentation

Type

Cardinality

Property PermissionsForRegName(IReqTypeKey

PermissionsForRegName [As Long) As enumPermissions read-only

Member of RegPro40.Project

String

0:1

Property RQSFilepath As String read-only

RQSFilepath | Member of ReqPro40.Project Returns the

pathname of the .rgsfile

String

01

Sub ExtendedHelp(sProduct As String, sSubTool
As String, sltem As String, sOperation As String,

ExtendedHelp | sQuery As String) Member of

RegPro40.Application Launches Rational
Extended Help

String

0:1

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has
administrative permissions

Boolean

0:1

ChangelLoggedinUser

Function Changel oggedinUser(vValue,
[eUserL ookup As enumUserL ookups =

Boolean

0:1

139

Template Slots

Slot nan e

Documentation

Type

Cardinality

eUserLookups_Key], [vValue2]) As Boolean
Member of ReqPro40.Project Changes the user
logged into the project.

IsLocked

Property IsLocked As Boolean read-only
Member of ReqPro40.Project Returns avalue
indicating whether or not the Project is |ocked.

Boolean

0:1

VersionRev

Property VersionRev AsLong read-only
Member of ReqgPro40.Application Returnsthe
version revision number

String

01

QueryValidate

Function QueryV alidate(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) AsLong Member of
ReqPro40.Project Checks the specified query
for correct syntax

String

0:1

Save

Sub Save() Member of ReqPro40.Views Save
all Views that have changed to the database

Any

0:1

LogRelationshipRevisions

Property L ogRelationshipRevisions As Boolean
Member of RegPro40.Project Returnsor sets
whether relationships are logged in Revisions

Boolean

0:1

GetRequirementsCount

Function

GetRequirementsCount(vReqgsL ookupValue,
[eRegsLookupType As

enumRequirementsL ookups =

eReqsL ookup_ReqTypeKey]) AsLong

Member of RegPro40.Project Retur ns the count
of records returned by a query.

String

0:1

Refresh

Sub Refresh() Member of RegPro40.View

Any

01

SequenceKey

Property SequenceKey AsLong read-only
Member of ReqPro40.Project Returns the
sequence key for the project. The sequencekey is
an incrementing number assigned as a project is
opened.

String

0:1

LockCount

Property LockCount AsLong read-only
Member of ReqPro40.Project Returns the
number of outstanding locks against the Project.

String

01

User GroupKey

Property UserGroupKey AsLong read-only
Member of RegPro40.Project Returns the group
of the current user

String

01

ValidPackage

Function ValidPackage (IKey AsLong) As
Boolean Member of RegPro40.Project

Boolean

01

NewReqgProCollection

Property NewReqgProCollection As
RegProCollection read-only Member of
ReqPro40.Project Returns a new
ReqgProCollection object.

String

0:1

140

Template Slots

Slot nan e

Documentation

Type

Cardinality

IsinDB

Property IsinDB(IKey AsLong, elnterfacelD As
enumlnterfacel dentifiers, [sVersionNumber As
String]) AsBoolean read-only Member of
ReqPro40.Project Returns whether the specified
object isin the database

Boolean

01

IsProjectLocked

Property IsProjectL ocked(vProjL ookupValue,
[eProjLookuptype As enumProjectL ookups]) As
Boolean read-only Member of
ReqPro40.Application Determinesif a specific
project has any outstanding locks.

Boolean

01

UserKey

Property UserKey AsLong read-only
Member of ReqPro40.Project Returns the key
of the current user

String

0:1

PWD

Property PWD As String Member of
ReqPro40.Application Sets a default password

String

0:1

PermissionsForReqTraceability

Property
PermissionsForReqTraceability(IReqTypeKey As
Long) AsenumPermissions read-only

Member of ReqPro40.Project Returns the
current user's permissions for editing the
traceability of requirements of the requirement
type (data).

String

0:1

Command

Function Command([vOne], [vTwo], [vThreg])
Member of RegPro40.Project Generic Interface
for providing additional functionality.

String

0:1

Revert

Sub Revert([bRevertAll As Boolean = Falsg])
Member of ReqPro40.Views Restores objects
to their state when originally created

Boolean

0:1

GetCurrentProjectUsers

Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqgPro40.Application

String

0:1

DBProperties

Property DBProperties As Object read-only
Member of ReqPro40.Project Returns the
properties for the project

String

01

Version

Property Version As String read-only
Member of ReqPro40.Application Returns the
version of the application

String

0:1

IsServer Open

Property IsServerOpen As Boolean read-only
Member of ReqPro40.Application Determines
whether the server is running

Boolean

0:1

1sOpenedReadOnly

Property 1sOpenedReadOnly As Boolean read-
only Member of RegPro40.Project Returns
whether the current user has opend the project
read only

Boolean

0:1

CloseServer

Sub CloseServer() Member of

Any

01

141

Template Slots

Slot nan e

Documentation

Type

Cardinality

ReqPro40.Application Reserved

| sOpenedExclusive

Property 1sOpenedExclusive As Boolean read-
only Member of RegPro40.Project Returns
whether the current user has opened the project
exclusively

Boolean

01

Personal Catalog

Property PersonalCatalog As Catalog read-only
Member of ReqPro40.Applicat ion Returns the
local Catalog object

String

0:1

CompareVersionNumber

Function CompareV ersionNumber(sNumberl As
String, sNumber2 As String) Member of
ReqPro40.Application Compares version
numbers

String

01

VersionMajor

Property VersionMajor AsLong read-only
Member of ReqPro40.Application Returnsthe
major version number of the application

String

0:1

DocSaveFormat

Property DocSaveFormat As
enumDocSaveFormat Member of
RegPro40.Project Returns the document save
format

String

01

GetRootPackage

Function GetRootPackage([bL oadAllPackages
As Boolean = False]) As RootPackage Member
of RegPro40.Project

String

0:1

GetRequirement

Function GetRequirement(vReqL ookupValue,
[eRegLookupType As

enumRequirementL ookups = eRegL ookup_Key],
[eWeight As enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags]) As Requirement
Member of ReqPro40.Project Returns the
object for the specified requirement

String

0:1

PermissionsForAttr

Property PermissionsForAttr(IReqTypeKey As
Long, IAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project
Returns the current user's permissions for editing
the AttrValues of the Attr type (data).

String

01

Personal Catalogltem

Property

Personal Catal ogltem(vCatL ookupValue,

[eCatL ookupType As enumCatal ogL ookups =
eCatL ookup_Name]) As Catalogltem read-only
Member of ReqPro40.Application Returnsthe
specified catalog item from the Local catalog
collection

String

0:1

Action

Event Action(eEventType As enumEventTypes,
eObjectType As enumlnterfacel dentifiers,
sGUID As String, VEventData, eEventDataType
As enumEventDataTypes, eEventSubType As

Any

0:1

142

Template Slots

Slot nan e

Documentation

Type

Cardinality

enumEventSubTypes, sTimestamp As String)
Member of RegPro40.Application

VersionMinor

Property VersionMinor AsLong read-only
Member of ReqPro40.Application Returnsthe
minor version number of the application

String

0:1

AreProjectsLocked

Property AreProjectsLocked As Boolean read-

only Member of ReqPro40.Application

Boolean

0:1

SetExclusiveAccess

Property SetExclusiveAccess As Boolean
Member of RegPro40.Project

Boolean

0:1

ProjectLockCount

Property ProjectL ockCount(vProjLookupValue,
[eProjLookuptype As enumProjectL ookups]) As
Long readonly Member of
RegPro40.Application Returns the number of
ouststanding locks on a project object.

String

0:1

PermissionsForReqType

Property PermissionsForReqType(IReqTypeK ey
AsLong) AsenumPermissions read-only
Member of ReqPro40.Project Returnsthe
current user's permissions for editing the
requirements of the requirement type (data).

String

0:1

Author|D

Property AuthorID AsLong
Member of RegPro40.Project

read-only

String

01

SecurityEnabled

Property SecurityEnabled As Boolean Member
of ReqPro40.Project Retur ns or sets whether
security is enabled for the project

Boolean

01

AutoSuspect

Property AutoSuspect As Boolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean

0:1

Count

Property Count AsLong read-only Member
of ReqPro40.Views Returns the number of
View objects in the collection

Any

0:1

XMLVersion

Property XMLVersion As Long
Member of RegPro40.Project

read-only

String

0:1

RefreshSecurity

Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves current security
information from the database

String

0:1

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) Member of
ReqPro40.Project Executes the specified query

String

0:1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As

enumProjectLookups]) Member of
RenProd0 Annlication Removes alock from a

String

01

143

Template Slots

Slot nan e

Documentation

Type

Cardinality

specific project.

PermissionsForDocType

Property PermissionsForDocType(IDocTypeKey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
Documents of the Document type (data).

String

0:1

Item

Property Item(vViewLookupValue,

[eViewL ookupType As enumViewl ookups =
eViewLookup_Key]) AsView read-only
Default member of ReqPro40.Views Returns
the specified View

Any

0:1

GetRequirements

Function GetRequirements(vReqsL ookupValue,
[eRegsLookupType As

enumRequirementsL ookups =
eReqsLookup_ReqTypeKey], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumReguirementFlags], [IPageSize As Long =
1000], [IPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returns the
requirements in the project

String

0:1

GetPackage

Function GetPackage(IKey As Long, [eWeight
As enumPackageWeights =
ePackageWeight_Empty]) As Package Member
of RegPro40.Project

String

01

PermissionsFor RegText

Property PermissionsForReqText(IReqTypeKey
AsLong) AsenumPermissions read-only
Member of RegPro40.Project

String

0:1

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionVal ue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties
Member of ReqPro40.Application Opens a
RequisitePro project and returns its properties

String

0:1

VersionDBSchema

Property VersionDBSchema AsLong read-only
Member of ReqPro40.Project Returns the
database schema version number

String

0:1

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enuminterfacel dentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqgPro40.Application

String

0:1

GetDiscussionltem

Function GetDiscussionltem(IKey AsLong) As

String

0:1

144

Template Slots

Slot nan e

Documentation

Type

Cardinality

Object Member of RegPro40.Project
the specified discussion or response

Returns

IsModified

Property IsModified As Boolean read-only
Member of ReqPro40.Views Returns whether
any of the Views in the collection have been
modified

Boolean

0:1

DropObjects

Sub DropObjects(elnterfacel D As
enumlinterfaceldentifiers) Member of
ReqPro40.Project Removes collections from
the Project object

String

01

oCustomTypes

Property CustomTypes As CustomTypes read-
only Member of RegPro40.Application

Reserved for future use.

String

0:1

EventRaiseEnabled

Property EventRaiseEnabled As Boolean
Member of RegPro40.Application Returns or
sets whether the server raises server events

Boolean

01

GetCurrentUsers

Function GetCurrentUsers() As Properties
Member of RegPro40.Project

String

01

PermissionsForListitemType

Property
PermissionsForListitemType(IReqTypeKey As
Long, IAttrKey As Long, IListitemKey AsLong)
As enumPermissions read-only Member of
RegPro40.Project Returns the current user's
permissions for editing the ListltemValue of the
Listltem type (data).

String

0:1

IsProjectOpen

Property IsProjectOpen As Boolean read-only
Member of ReqPro40.Project Returns whether
the current user has the project open

Boolean

0:1

LockProject

Function LockProject(vProjLookupValue,

[eProjL ookuptype As enumProjectL ookups]) As
String Member of ReqPro40.Application

L ocks a specific open project.

String

01

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vRegTypeL ookupValue,
[eReqTypeL ookupType As

enumReqTypesL ookups =
eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentReqgL ookupValue],

[eParent RegLookupType As
enumRequirementL ookups =

eReqL ookup_Empty]) As Requirement
Member of RegPro40.Project

String

01

IsvalidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only

String

0:1

145

Template Slots

Slot nan e

Documentation

Type

Cardinality

Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid
lock.

CLASS REQUIREMENT

S

TemplateSlots

Slot nan e

Documentation

Type

Cardinality

GetPackage

Function GetPackage(IKey As Long, [eWeight
As enumPackageWeights =
ePackageWeight_Empty]) As Package Member
of RegPro40.Project

String

0:1

Count

Property Count AsLong read-only Member
of ReqPro40.Views Returns the number of
View objects in the collection

Any

0:1

Item

Property Item(vViewL ookupValue,

[eViewL ookupType As enumViewL ookups =
eViewLookup_Key]) AsView read-only
Default member of RegPro40.Views Returns
the specified View

Any

01

|sOpenedExclusive

Property IsOpenedExclusive As Boolean read-
only Member of ReqPro40.Project Returns
whether the current user has opened the project
exclusively

Boolean

0:1

GetRequirementsCount

Function

GetRequirementsCount(vReqgsL ookupValue,
[eRegsLookupType As

enumReguirementsL ookups =
eRegsLookup_ReqTypeKey]) AsLong

Member of ReqPro40.Project Returns the count
of records returned by a query.

String

0:1

AreProjectsLocked

Property AreProjectsLocked As Boolean read-
only Member of ReqPro40.Application

Boolean

0:1

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vVReqTypeL ookupValue,
[eReqTypeL ookupType As

enumReqTypesL ookups =
eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentReqL ookupValue],

[eParentRegL ookupType As
enumRequirementL ookups =

eReqL ookup_Empty]) As Requirement
Member of RegPro40.Project

String

01

VersionDBSchema

Property VersionDBSchema AsLong read-only
Member of ReqPro40.Project Returns the
database schema version number

String

0:1

146

Template Slots

Slot nan e

Documentation

Type

Cardinality

GetCurrentProjectUsers

Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqgPro40.Application

String

0:1

Personal Catalogltem

Property

Personal Catal ogltem(vCatL ookupValue,

[eCatL ookupType As enumCatal ogL ookups =
eCatL ookup_Name]) As Catalogltem read-only
Member of ReqPro40.Application Returnsthe
specified catalog item from the Local catalog
collection

String

0:1

Refresh

Sub Refresh() Member of RegPro40.View

Any

01

GetRootPackage

Function GetRootPackage([bL oadAllPackages
As Boolean = Falsg]) As RootPackage Member
of RegPro40.Project

String

01

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionVal ue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties
Member of ReqPro40.Application Opensa
RequisitePro project and returns its properties

String

01

GetDiscussionltem

Function GetDiscussionltem(IKey AsLong) As
Object Member of ReqPro40.Project Returns
the specified discussion or response

String

01

PermissionsForDocType

Property PermissionsForDocType(IDocTypeK ey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
Documents of the Document type (data).

String

0:1

DocSaveFormat

Property DocSaveFormat As
enumDocSaveFormat Member of
ReqPro40.Project Returns the document save
format

String

0:1

PermissionsFor RegText

Property PermissionsForReqText(IReqTypeKey
AsLong) AsenumPermissions read-only
Member of RegPro40.Project

String

0:1

Version

Property Version As String read-only
Member of RegPro40.Application Returnsthe
version of the application

String

01

Action

Event Action(eEventType As enumEventTypes,
eObjectType As enumlnterfacel dentifiers,
sGUID As String, vEventData, eEventDataT ype
As enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
Member of RegPro40.Application

Any

0:1

147

Template Slots

Slot nan e

Documentation

Type

Cardinality

GetRequirements

Function GetRequirements(vReqsL ookupValue,
[eRegsLookupType As

enumReguirementsL ookups =
eReqgsLookup_ReqTypeKey], [eWeight As
enumReguirementsWeights =
eRegWeight_Medium], [eFlags As
enumRequirementFlags], [IPageSize As Long =
1000], [IPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returns the
requirementsin the project

String

0:1

SecurityEnabled

Property SecurityEnabled As Boolean Member
of RegPro40.Project Returns or sets whether
security is enabled for the project

Boolean

0:1

RefreshSecurity

Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves current security
information from the database

String

0:1

NewRegProCollection

Property NewReqProCollection As
RegProCollection read-only Member of
RegPro40.Project Returns anew
ReqProCollection object.

String

01

VersionRev

Property VersionRev AsLong read-only
Member of ReqPro40.Application Returnsthe
version revision number

String

0:1

LockProject

Function LockProject(vProjLookupValue,

[eProjL ookuptype As enumProjectL ookups]) As
String Member of RegPro40.Application
Locks a specific open project.

String

0:1

DropObjects

Sub DropObjects(elnterfacel D As
enumlnterfaceldentifiers) Member of
ReqPro40.Project Removes collections from
the Project object

String

0:1

1sOpenedReadOnly

Property |sOpenedReadOnly As Boolean read-
only Member of ReqPro40.Project Returns
whether the current user has opend the project
read only

Boolean

01

ExtendedHelp

Sub ExtendedHelp(sProduct As String, sSubTool
As String, sltem As String, sOperation As String,
sQuery As String) Member of
ReqPro40.Application Launches Rational
Extended Help

String

0:1

oCustomTypes

Property CustomTypes As CustomTypes read-
only Member of RegPro40.Application
Reserved for future use.

String

0:1

ChangelLoggedinUser

Function Changel oggedinUser(vValue,
[eUserL ookup As enumUserLookups =
eUserLookups_Key], [vValue2]) As Boolean

Boolean

0:1

148

Template Slots

Slot nan e

Documentation

Type

Cardinality

Member of RegPro40.Project
logged into the project.

Changes the user

Command

Function Command([vOne], [vTwo], [vThree])
Member of ReqPro40.Project Generic Interface
for providing additional functionality.

String

0:1

Save

Sub Save() Member of ReqPro40.Views Save
al Views that have changed to the database

Any

0:1

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) Member of
ReqPro40.Project Executes the specified query

String

01

IsProjectOpen

Property IsProjectOpen As Boolean read-only
Member of ReqPro40.Project Returns whether
the current user has the project open

Boolean

0:1

LockCount

Property LockCount AsLong read-only
Member of ReqPro40.Project Returnsthe
number of outstanding locks against the Project.

String

0:1

GetRequirement

Function GetRequirement(vReqL ookupValue,
[eRegLookupType As

enumRequirementL ookups = eReqL ookup_Key],
[eWeight As enumRequirementsWeights =
eRegWeight_Medium], [eFlags As
enumRequirementFlags]) As Requirement
Member of ReqPro40.Project Returnsthe
object for the specified requirement

String

01

GetCurrentUsers

Function GetCurrentUsers() As Properties
Member of RegPro40.Project

String

0:1

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has
administrative permissions

Boolean

01

IsLocked

Property IsLocked As Boolean read-only
Member of ReqPro40.Project Returns avalue
indicating whether or not the Project is |ocked.

Boolean

0:1

Personal Catalog

Property PersonalCatalog As Catalog read-only
Member of ReqPro40.Application Returnsthe
local Catalog object

String

0:1

PermissionsForReqType

Property PermissionsForReqType(IReqTypeK ey
AsLong) AsenumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
requirements of the requirement type (data).

String

0:1

IsinDB

Property IsinDB(IKey As Long, elnterfacelD As
enuminterfacel dentifiers, [sVersionNumber As

Boolean

0:1

149

Template Slots

Slot nan e

Documentation

Type

Cardinality

String]) AsBoolean read-only Member of
ReqPro40.Project Returns whether the specified
object isin the database

VersionMinor

Property VersionMinor AsLong read-only
Member of ReqPro40.Application Returnsthe
minor version number of the application

String

0:1

EventRaiseEnabled

Property EventRaiseEnabled As Boolean
Member of RegPro40.Application Returns or
sets whether the server raises server events

Boolean

01

PermissionsFor ReqName

Property PermissionsForRegName(IRegTypeKey
As Long) As enumPermissions read-only
Member of RegPro40.Project

String

0:1

PermissionsForListltemType

Property
PermissionsForListitemType(IReqTypeKey As
Long, IAttrKey As Long, IListltemKey As Long)
As enumPermissions read-only Member of
ReqPro40.Project Returnsthe current user's
permissions for editing the ListlitemValue of the
Listltem type (data).

String

0:1

PermissionsForRegTraceability

Property
PermissionsForReqTraceability(IReqTypeKey As
Long) As enumPermissions read-only

Member of ReqPro40.Project Returns the
current user's permissions for editing the
traceability of requirements of the requirement
type (data).

String

01

IsModified

Property IsModified As Boolean read-only
Member of ReqPro40.Views Returns whether
any of the Views in the collection have been
modified

Boolean

01

LogRelationshipRevisions

Property L ogRelationshipRevisions As Boolean
Member of ReqPro40.Project Returns or sets
whether relationships are logged in Revisions

Boolean

0:1

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only
Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid
lock.

String

01

RQSFilepath

Property RQSFilepath As String read-only
Member of ReqPro40.Project Returns the
pathname of the .rgsfile

String

01

VersionMajor

Property VersionMajor AsLong read-only
Member of ReqPro40.Application Returnsthe
major version number of the application

String

0:1

150

Template Slots

Slot nan e

Documentation

Type

Cardinality

DBProperties

Property DBProperties As Object read-only
Member of ReqPro40.Project Returnsthe
properties for the project

String

0:1

Author|D

Property AuthorID AsLong
Member of RegPro40.Project

read-only

String

0:1

AutoSuspect

Property AutoSuspect AsBoolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean

0:1

ValidPackage

Function ValidPackage (IKey AsLong) As
Boolean Member of RegPro40.Project

Boolean

0:1

QueryValidate

Function QueryValidate(eQueryBaseT ype As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) AsLong Member of
ReqPro40.Project Checks the specified query
for correct syntax

String

0:1

SequenceKey

Property SequenceKey AsLong read-only
Member of ReqPro40.Project Returns the
sequence key for the project. The sequencekey is
an incrementing number assigned as aproject is
opened.

String

0:1

CloseServer

Sub CloseServer() Member of
ReqPro40.Application Reserved

Any

0:1

PWD

Property PWD As String Member of
RegPro40.Application Sets a default password

String

0:1

Revert

Sub Revert([bRevertAll As Boolean = False])
Member of ReqPro40.Views Restores objects
to their state when originally created

Boolean

0:1

CompareVersionNumber

Function CompareV ersionNumber(sNumberl As
String, sSNumber2 As String) Member of
ReqPro40.Application Compares version
numbers

String

01

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes alock from a
specific project.

String

01

UserKey

Property UserKey As Long
Member of ReqPro40.Project
of the current user

read-only
Returns the key

String

0:1

PermissionsForAttr

Property PermissionsForAttr(IReqTypeKey As
Long, IAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project
Returns the current user's permissions for editing
the AttrValues of the Attr type (data).

String

01

151

Template Slots

Slot nan e

Documentation

Type

Cardinality

IsProjectLocked

Property IsProjectL ocked(vProjL ookupValue,
[eProjLookuptype As enumProjectL ookups]) As
Boolean read-only Member of
ReqPro40.Application Determinesif a specific
project has any outstanding locks.

Boolean

01

ProjectLockCount

Property ProjectLockCount(vProjL ookupValue,
[eProjLookuptype As enumProjectL ookups]) As
Long read-only Member of
ReqPro40.Application Returns the number of
ouststanding locks on a project object.

String

01

XMLVersion

Property XMLVersion AsLong read-only
Member of RegPro40.Project

String

0:1

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enuminterfaceldentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqgPro40.Application

String

01

IsServer Open

Property IsServerOpen As Boolean read-only
Member of RegPro40.Application Determines
whether the server is running

Boolean

01

User GroupKey

Property UserGroupKey AsLong read-only
Member of ReqPro40.Project Returns the group
of the current user

String

0:1

SetExclusiveAccess

Property SetExclusiveAccess As Boolean
Member of RegPro40.Project

Boolean

0:1

CLASS REQUIREMENT

Template Slots

Slot nan e

Documentation

Type

Cardinality

LogRelationshipRevisions

Property L ogRelationshipRevisions As Boolean
Member of ReqPro40.Project Returns or sets
whether relationships are logged in Revisions

Boolean

0.1

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectL ookups]) As Boolean read-only
Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid
lock.

String

01

AreProjectsLocked

Property AreProjectsLocked As Boolean read-
only Member of ReqPro40.Application

Boolean

0.1

VersionMajor

Property VersionMajor AsLong read-only
Member of ReqPro40.Application Returnsthe
major version number of the application

String

0.1

152

Template Slots

Slot nan e

Documentation

Type

Cardinality

Display

Function Display(eDisplayMode As
enumDisplayModes, eDisplayT ype As
enumDisplayTypes) As Object Member of
ReqPro40.Requirement This method will
display arequirement dialog of the mode and
type received.

String

01

TraceFrom

Property TraceFrom(vRelLookupValue,
[eRelLookupType As enumRelationshipL ookups
= eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns the Relationship object for the specified
traced from object

String

0.1

AuthorID

Property AuthorID AsLong
Member of RegPro40.Project

read-only

String

01

Child

Property Child(vRelLookupValue,
[eRelLookupType As enumRelationshipL ookups
= eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns the Relationship object for the specified
child of this requirement

String

0.1

XMLVersion

Property XMLVersion As Long
Member of RegPro40.Project

read-only

String

01

Bookmark

Property Bookmark As String read-only
Member of RegPro40.Requirement Returns the
bookmark associated with this requirement (if
any)

String

0.1

AutoSuspect

Property AutoSuspect As Boolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean

01

TracesFrom

Property TracesFrom As Relationships read-
only Member of ReqPro40.Requirement
Returns a Relationships object representing all of
the objects from which this requirement traces

String

0.1

Version

Property Version As String read-only
Member of ReqPro40.Application Returnsthe
version of the application

String

0.1

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionVal ue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties
Member of ReqPro40.Application Opensa
RequisitePro project and returns its properties

Sring

0.1

LockCount

Property LockCount AsLong read-only
Member of ReqPro40.Project Returns the
number of outstanding locks against the Project.

String

0.1

153

Template Slots

Slot nan e

Documentation

Type

Cardinality

CloseServer

Sub CloseServer() Member of
ReqPro40.Application Reserved

Any

0.1

DocKey

Property DocKey AsLong read-only

Member of ReqPro40.Requirement Returns the
key for the Document object associated with this
requirement (if any)

String

0.1

Item

Property Item(vViewLookupValue,

[eViewL ookupType As enumViewl ookups =
eViewLookup_Key]) AsView read-only
Default member of ReqPro40.Views Returns
the specified View

Any

0.1

GetRequirementsCount

Function

GetRequirementsCount(vReqgsL ookupValue,
[eRegsLookupType As

enumReguirementsL ookups =
eRegsLookup_ReqTypeKey]) As Long

Member of RegPro40.Project Returns the count
of records returned by a query.

String

0:1

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) M ember of
ReqPro40.Project Executes the specified query

String

01

IsPermittedFor

Property IsPermittedFor(ePermission As
enumPermissions, ePermissionFor As
enumPermissionTypes) As Boolean read-only
Member of ReqPro40.Requirement Returns
whether the specified permissions are permitted
for the specified permission type for the currently
logged in user. The ReqType, ReqTraceability
and ReqText permission types are valid types for
thisinterface

Boolean

0:1

| sOpenedExclusive

Property 1sOpenedE xclusive As Boolean read-
only Member of RegPro40.Project Returns
whether the current user has opened the project
exclusively

Boolean

01

DocSaveFormat

Property DocSaveFormat As
enumDocSaveFormat Member of
RegPro40.Project Returns the document save
format

String

0:1

TracesTo

Property TracesTo As Relationships read-only
Member of ReqPro40.Requirement Returns a
Relationship object for the specified traces to
object

String

0.1

PermissionsForReqType

Property PermissionsForReqType(IReqTypeKey
AsLong) AsenumPermissions read-only

String

0.1

154

Template Slots

Slot nan e

Documentation

Type

Cardinality

Member of ReqPro40.Project Returns the
current user's permissions for editing the
reguirements of the requirement type (data).

PermissionsForReqName

Property PermissionsForReqName(l ReqTypeK ey
AsLong) AsenumPermissions read-only
Member of RegPro40.Project

String

0:1

Personal Catalog

Property Personal Catalog As Catalog read-only
Member of ReqgPro40.Application Returnsthe
local Catalog object

String

01

Flags

Property Flags As enumRequirementFlags
read-only Member of ReqPro40.Requirement
Returns the EnumRequirementFlags object
associated with this requirement

String

0.1

IsLocked

Property IsLocked As Boolean read-only
Member of ReqPro40.Project Returns avalue
indicating whether or not the Project is locked.

Boolean

01

VersionMinor

Property VersionMinor AsLong read-only
Member of ReqgPro40.Application Returnsthe
minor version number of the application

String

01

IsNew

Property IsNew As Boolean read-only
Member of RegPro40.Requirement Indicates if
the requirement is not new.

Boolean

0.1

UserKey

Property UserKey AsLong read-only
Member of ReqPro40.Project Returns the key
of the current user

String

0.1

PermissionsFor RegTraceability

Property
PermissionsForRegTraceability(IReqTypeK ey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
traceability of requirements of the requirement
type (data).

String

0.1

IsinDB

Property IsinDB(IKey AsLong, elnterfacelD As
enumlnterfacel dentifiers, [sVersionNumber As
String]) AsBoolean read-only Member of
ReqPro40.Project Returns whether the
specified object is in the database

Boolean

01

GetPackage

Function GetPackage(IKey As Long, [eWeight
As enumPackageWeights =
ePackageWeight_Empty]) As Package Member
of ReqPro40.Project

String

0.1

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vRegTypeL ookupValue,
[eReqTypeLookupType As

enumReqTypesL ookups =

String

01

155

Template Slots

Slot nan e

Documentation

Type

Cardinality

eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentRegL ookupV alue],

[eParentRegL ookupType As
enumRequirementL ookups =
eRegLookup_Empty]) As Requirement
Member of RegPro40.P roject

SecurityEnabled

Property SecurityEnabled As Boolean Member
of RegPro40.Project Returns or sets whether
security is enabled for the project

Boolean

0.1

IsProjectOpen

Property IsProjectOpen As Boolean read-only
Member of ReqPro40.Project Returns whether
the current user has the project open

Boolean

0.1

ChangelLoggedInUser

Function Changel oggedinUser(vValue,

[eUserL ookup As enumUserL ookups =
eUserLookups_Key], [vValue2]) As Boolean
Member of RegPro40.Project Changes the user
logged into the project.

Boolean

01

Text

Property Text As String Member of
ReqPro40.Requirement Returns or sets the
textual definition for this requirement

String

0.1

Children

Property Children As Relationships read-only
Member of RegPro40.Requirement Returns a
collection of Relationship objects representing
the children of this requirement

String

01

RefreshSecurity

Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves current security
information from the database

String

0.1

oCustomTypes

Property CustomTypes As CustomTypes read-
only Member of RegPro40.Application

Reserved for future use.

String

0:1

VersionRev

Property VersionRev AsLong read-only
Member of ReqPro40.Application Returns the
version revision number

String

01

QueryValidate

Function QueryV alidate(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) AsLong Member of
ReqPro40.Project Checks the specified query
for correct syntax

String

0:1

1sOpenedReadOnly

Property |sOpenedReadOnly As Boolean read-
only Member of RegPro40.Project Returns
whether the current user has opend the project
read only

Boolean

0.1

SuspectDateTime

Propertv SuspbectDateTime As Strina read-onlv

String

0:1

156

Template Slots

Slot nan e

Documentation

Type

Cardinality

Member of RegPro40.Requirement

SequenceKey

Property SequenceKey AsLong read-only
Member of ReqPro40.Project Returns the
sequence key for the project. The sequencekey is
an incrementing number assigned as a project is
opened.

String

0.1

DeleteRequirementHierarchy

Sub DeleteRequirementHierarchy([eDeleteFlag
As enumRequirementDeleteFlags =
eReqDelFlag_Empty],

[vNewParentL ookupValue],

[vNewParentL ookupType As
enumRequirementL ookups = eReqL ookup_Key])
Member of ReqPro40.Requirement Deletes a
requirement from the project and provides
options for dealing with hierarchical children.

String

01

PermissionsForListltemType

Property
PermissionsForListltemType(IReqTypeKey As
Long, IAttrKey As Long, IListitemKey As Long)
As enumPermissions read-only Member of
ReqPro40.Project Returnsthe current user's
permissions for editing the ListitemValue of the
Listltem type (data).

String

01

VersionDBSchema

read-
Returns

Property VersionDBSchema As Long
only Member of RegPro40.Project
the database schema version number

String

01

Count

Property Count AsLong read-only Member
of ReqPro40.Views Returns the number of
View objects in the collection

Any

0.1

SetExclusiveAccess

Property SetExclusiveAccess As Boolean
Member of RegPro40.Project

Boolean

0.1

ExtendedHelp

Sub ExtendedHelp(sProduct As String, sSubTool
As String, sltem As String, sOperation As String,
sQuery As String) Member of
RegPro40.Application Launches Rational
Extended Help

String

01

Level

Property Level AsLong read-only Member
of ReqPro40.Requirement Returns the
hierarchical level of this requirement

String

0.1

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean
read-only Member of RegPro40.Project
Returns whether the current user has
administrative permissions

Boolean

0:1

IsRoot

Property IsRoot As Boolean read-only
Member of ReqPro40.Requirement Returns
whether this requirement is a root regquirement

Boolean

0.1

157

Template Slots

Slot nan e

Documentation

Type

Cardinality

HasParent

Property HasParent([ICount AsLong]) As
Boolean read-only Member of
RegPro40.Requirement Returns whether this
requirement has a parent

Boolean

0.1

DBState

Property DBState As String read-only
Member of RegPro40.Requirement Returns the
state of the object in the underlying datasource.

String

01

GetRequirements

Function GetRequirements(vReqgsL ookupValue,
[eRegsLookupType As

enumReguirementsL ookups =
eReqsLookup_ReqTypeKey], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumReguirementFlags], [IPageSize As Long =
1000], [IPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returns the
requirementsin the project

String

0.1

Action

Event Action(eEventType As enumEventTypes,
eObjectType As enumlinterfacel dentifiers,
sGUID As String, VEventData, eEventDataType
As enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
Member of RegPro40.Application

Any

0.1

IsProjectLocked

Property IsProjectL ocked(vProjL ookupValue,
[eProjLookuptype As enumProjectL ookups]) As
Boolean read-only Member of
RegPro40.Application Determines if a specific
project has any outstanding locks.

Boolean

01

CompareVersionNumber

Function CompareV ersionNumber(sNumberl As
String, sNumber2 As String) Member of
ReqPro40.Application Compares version
numbers

String

0.1

NewReqgProCollection

Property NewReqgProCollection As
RegProCollection read-only Member of
ReqPro40.Project Returns a new
ReqgProCollection object.

String

01

Refresh

Sub Refresh() Member of RegPro40.View

Any

0.1

GetDiscussions

Function GetDiscussions() As Discussions
Member of RegPro40.Requirement Returns the
Discussions object associated with this
requirement

String

0.1

GetRequirement

Function GetRequirement(vRegL ookupValue,
[eRegLookupType As

enumRequirementL ookups = eReqL ookup_Key],
[eWeight As enumRequirementsWeights =
eReqWeight_Medium], [eFlags As

String

01

158

Template Slots

Slot nan e

Documentation

Type

Cardinality

enumRequirementFlags]) As Requirement
Member of ReqPro40.Project Returnsthe
object for the specified requirement

Personal Catalogltem

Property

Personal Catal ogltem(vCatL ookupValue,

[eCatL ookupType As enumCatal ogL ookups =
eCatL ookup_Name]) As Catalogltem read-only
Member of RegPro40.Application Returnsthe
specified catalog item from the Local catalog
collection

String

0.1

PermissionsFor

Property PermissionsFor(ePermissionFor As
enumPermissionTypes) As enumPermissions
read-only Member of ReqPro40.Requirement
Returns the permissions for the currently logged
in user for the permission type specified. The
ReqType, RegTraceability and ReqText
permission types are valid types for this interface.

String

0.1

TraceTo

Property TraceTo(vRelLookupValue,
[eRelLookupType As enumRelationshipL ookups
= eRelLookup_DerivedK ey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns a Relationships object representing all of
the objects to which this requirement traces

String

0.1

GetCurrentUsers

Function GetCurrentUsers() As Properties
Member of ReqPro40.Project

String

0.1

GetDiscussionltem

Function GetDiscussionltem(IKey AsLong) As
Object Member of ReqPro40.Project Returns
the specified discussion or response

String

0.1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes alock from a
specific project.

String

01

Command

Function Command([vOne], [vTwo], [vThree])
Member of ReqPro40.Project Generic Interface
for providing additional functionality.

String

0.1

IsModified

Property IsModified As Boolean read-only
Member of ReqPro40.Views Returns whether
any of the Views in the collection have been
modified

Boolean

01

Save

Sub Save() Member of ReqPro40.Views Save
all Views that have changed to the database

Any

01

DBProperties

Property DBProperties As Object read-only
Member of ReqPro40.Project Returns the
properties for the project

String

0.1

159

Template Slots

Slot nan e

Documentation

Type

Cardinality

GetRootPackage

Function GetRootPackage([bL oadAllPackages
AsBoolean = False]) As RootPackage Member
of RegPro40.Project

String

0.1

PermissionsForAttr

Property PermissionsForAttr(IReqTypeKey As
Long, IAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project
Returns the current user's permissions for editing
the AttrValues of the Attr type (data).

String

01

UserGroupKey

Property UserGroupKey AsLong read-only
Member of ReqPro40.Project Returnsthe
group of the current user

String

0:1

EventRaiseEnabled

Property EventRaiseEnabled As Boolean
Member of RegPro40.Application Returns or
sets whether the server raises server events

Boolean

01

LockProject

Function LockProject(vProjLookupValue,
[eProjLookuptype As enumProjectL ookups]) As
String Member of ReqPro40.Application

L ocks a specific open project.

String

0.1

AssignParent

Function AssignParent(vRegL ookupValue,
[eRegLookupType As

enumRequirementL ookups = eReqlL ookup_Key])
AsRequirement Member of
RegPro40.Requirement Changes the
requirement's parent or setstheit to the root
level.

String

0.1

HasTracesFrom

Property HasTracesFrom([ICount AsLong]) As
Boolean read-only Member of
RegPro40.Requirement Returns whether this
requirement has any traces from other
requirements. Optionally returns the number of
thesetraces.

Boolean

01

PermissionsFor RegText

Property PermissionsForReqText(IReqTypeKey
AsLong) AsenumPermissions read-only
Member of RegPro40.Project

String

0:1

NextVersionNumber

Property NextVersionNumber As String read-
only Member of ReqPro40.Requirement
Returns the next sequential version number for

this requirement

String

01

HasTracesTo

Property HasTracesTo([ICount As Long]) As
Boolean read-only Member of
RegPro40.Requirement Returns whether this
requirement has any traces to other requirements.
Optionally returns the number of these traces.

Boolean

01

DropObjects

Sub DropObjects(elnterfacelD As
enumlnterfaceldentifiers) Member of
ReaPro40.Proiect Removes collections from

String

0.1

160

Template Slots

Slot nan e

Documentation

Type

Cardinality

the Project object

GetCurrentProjectUsers

Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqPro40.Application

String

01

DocPosition

Property DocPosition AsLong read-only
Member of RegPro40.Requirement Returns the
position of the requirement within the document.

String

0.1

Tag

Property Tag([eTagFormat As enumTagFormat =
eTagFormat_Tag]) As String read-only
Member of ReqPro40.Requirement Returns the
tag for this requirement

String

0.1

ValidPackage

Function ValidPackage (IKey AsLong) As
Boolean Member of RegPro40.Project

Boolean

01

PermissionsForDocType

Property PermissionsForDocType(IDocTypeKey
As Long) AsenumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
Documents of the Document type (data).

String

0.1

PWD

Property PWD As String Member of
RegPro40.Application Sets a default password

String

0:1

|sServer Open

Property IsServerOpen AsBoolean read-only
Member of ReqPro40.Application Determines
whether the server is running

Boolean

01

WeightName

Property WeightName As String read-only
Member of RegPro40.Requirement Returns a
string representation of the weight of this object

String

01

ProjectLockCount

Property ProjectL ockCount(vProjLookupV alue,
[eProjLookuptype As enumProjectLookups]) As
Long readonly Member of
RegPro40.Application Returns the number of
ouststanding locks on a project object.

String

0.1

Revert

Sub Revert([bRevertAll As Boolean = False])
Member of ReqPro40.Views Restores objects
to their state when originally created

Boolean

0.1

IsDocBased

Property IsDocBased As Boolean read-only
Member of ReqPro40.Requirement Returns
whether this requirement lives in a document

Boolean

0.1

RQSFilepath

Property RQSFilepath As String read-only
Member of ReqPro40.Project Returnsthe
pathname of the .rgsfile

String

0:1

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enumlnterfaceldentifiers, sGUID As String,
vEventData, eEventDataType As

String

01

161

Template Slots

Slot nan e

Documentation

Type

Cardinality

enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqgPro40.Application

CLASSATTRVALUES

TemplateSlots

Slotnan e

Documentation

Type

Zardinality

GetPackage

Function GetPackage(IKey As Long, [eWeight
As enumPackageWeights =
ePackageWeight_Empty]) As Package
Member of RegPro40.Project

String

0:1

Count

Property Count AsLong read-only Member
of ReqPro40.Views Returns the number of
View objects in the collection

Any

0:1

Item

Property Item(vViewLookupValue,
[eViewLookupType As enumViewL ookups =
eViewLookup_Key]) AsView read-only
Default member of RegPro40.Views Returns
the specified View

Any

01

|sOpenedExclusive

Property 1sOpenedExclusive As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has opened the
project exclusively

Boolean

0:1

GetRequirementsCount

Function

GetRequirementsCount(vReqgsL ookupValue,
[eRegsLookupType As

enumRequirementsL ookups =

eRegsL ookup_ReqTypeKey]) As Long
Member of ReqPro40.Project Returns the
count of records returned by a query.

String

0:1

AreProjectsLocked

Property AreProjectsLocked As Boolean
read-only Member of RegPro40.Application

Boolean

0:1

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vRegTypeL ookupValue,
[eReqTypeLookupType As

enumReqTypesL ookups =
eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentRegL ookupValue],

[eParentReqgL ookupType As
enumRequirementL ookups =

eReqL ookup_Empty]) As Requirement
Member of RegPro40.Project

String

01

VersionDBSchema

Property VersionDBSchema AsLong read-
only Member of RegPro40.Project Returns
the database schema version number

String

0:1

162

Template Slots

Slotnan e

Documentation

Type

Zardinality

Flags

Property Flags As enumRequirementFlags
read-only Member of ReqPro40.Requirement
Returns the EnumRequirementFlags object
associated with this requirement

String

0:1

AssignParent

Function AssignParent(vRegL ookupValue,
[eRegLookupType As
enumRequirementL ookups =
eRegLookup_Key]) As Requirement Member
of ReqPro40.Requirement Changes the
requirement's parent or setstheit to the root
level.

String

01

GetCurrentProjectUsers

Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqgPro40.Application

String

01

Personal Catal ogltem

Property

Personal Catal ogltem(vCatL ookupV alue,
[eCatL ookupType As enumCatal ogL ookups =
eCatL ookup_Name]) As Catalogltem read-
only Member of ReqPro40.Application
Returns the specified catalog item from the
Local catalog collection

String

0:1

Child

Property Child(vRelLookupValue,
[eRelLookupType As

enumRel ationshi pL ookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns the Relationship object for the
specified child of this requirement

String

0:1

Refresh

Sub Refresh() Member of RegPro40.View

Any

01

GetRootPackage

Function GetRootPackage([bL oadAll Packages
As Boolean = False]) As RootPackage
Member of ReqPro40.Project

String

01

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionValue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties
Member of ReqPro40.Application Opensa
RequisitePro project and ret urns its properties

String

01

GetDiscussionltem

Function GetDiscussionltem(IKey AsLong) As
Object Member of ReqPro40.Project
Returns the specified discussion or response

String

01

PermissionsForDocType

Property
PermissionsForDocType(IDocTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returnsthe

String

0:1

163

Template Slots

Slotnan e

Documentation

Type

Zardinality

current user's permissions for editing the
Documents of the Document type (data).

DocSaveFormat

Property DocSaveFormat As
enumDocSaveFormat Member of
ReqPro40.Project Returns the document save
format

String

0:1

Per missionsForRegText

Property
PermissionsForReqText(IReqTypeKey As
Long) As enumPermissions read-only
Member of RegPro40.Project

String

01

Version

Property Version As String read-only
Member of ReqPro40.Application Returns
the version of the application

String

0:1

IsNew

Property IsNew As Boolean read-only
Member of RegPro40.Requirement Indicates
if the requirement is not new.

Boolean

01

Action

Event Action(eEventType As
enumEventTypes, eObjectType As
enumlnterfaceldentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
Member of ReqPro40.Application

Any

01

Level

Property Level AsLong read-only Member
of ReqPro40.Requirement Returns the
hierarchical level of this requirement

String

0:1

DocPaosition

Property DocPosition AsLong read-only
Member of RegPro40.Requirement Returns
the position of the requirement within the
document.

String

01

Tag

Property Tag([eTagFormat As enumTagFormat
= eTagFormat_Tag]) As String read-only
Member of RegPro40.Requirement Returns
the tag for this requirement

String

0:1

GetRequirements

Function

GetRequirements(vReqgsL ookupValue,
[eRegsLookupType As

enumRequirementsL ookups =
eReqsLookup_ReqTypeKey], [eWeight As
enumRequirementsWeights =
eRegWeight_Medium], [eFlags As
enumRegquirementFlags], [IPageSize As Long =
1000], [IPages As Long = 2]) As Requirements
Member of RegPro40.Project Returns the
reguirementsin the project

String

0:1

SecurityEnabled

Property SecurityEnabled As Boolean

Boolean

01

164

Template Slots

Slotnan e

Documentation

Type

Zardinality

Member of RegPro40.Project Returns or sets
whether security is enabled for the project

RefreshSecurity

Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves current security
information from the database

String

0:1

NewRegProCollection

Property NewReqgProCollection As
RegProCollection read-only Member of
RegPro40.Project Returns anew
RegProCollection object.

String

0:1

VersionRev

Property VersionRev AsLong read-only
Member of ReqPro40.Application Returns
the version revision number

String

0:1

LockProject

Function LockProject(vProjLookupValue,
[eProjLookuptype As enumProjectL ookups])
As String Member of RegPro40.Application
L ocks a specific open project.

String

0:1

DropObjects

Sub DropObjects(elnterfacel D As
enumlnterfaceldentifiers) Member of
ReqPro40.Project Removes collections from
the Project object

String

0:1

IsOpenedReadOnly

Property 1sOpenedReadOnly As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has opend the
project read only

Boolean

0:1

ExtendedHelp

Sub ExtendedHel p(sProduct As String,
sSubTool As String, sltem As String,
sOperation As String, sQuery As String)
Member of ReqPro40.Application Launches
Rational Extended Help

String

0:1

oCustomTypes

Property CustomTypes As CustomTypes
read-only Member of ReqPro40.Application
Reserved for future use.

String

0:1

SuspectDateTime

Property SuspectDateTime As String read-
only Member of RegPro40.Requirement

String

0:1

ChangelLoggedinUser

Function Changel oggedinUser(vValue,
[eUserLookup As enumUserL ookups =
eUserLookups_Key], [vVaue2]) AsBoolean
Member of RegPro40.Project Changes the
user logged into the project.

Boolean

0:1

Command

Function Command([vOne], [vTwo], [VThree])
Member of ReqPro40.Project Generic
Interface for providing additional functionality.

String

0:1

Save

Sub Save() Member of ReqPro40.Views
Save al Views that have changed to the
database

Any

0:1

165

Template Slots

Slotnan e

Documentation

Type

Zardinality

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) Member of
ReqPro40.Project Executes the specified
query

String

01

DeleteRequirementHierarchy

Sub DeleteRequirementHierarchy([eDeleteFlag
As enumRequirementDel eteFlags =
eReqDelFlag_Empty],

[vNewParentL ookupValue],

[vNewParentL ookupType As
enumRequirementL ookups =
eRegLookup_Key]) Member of
RegPro40.Requirement Deletes a requirement
from the project and provides options for
dealing with hierarchical children.

String

01

IsProjectOpen

Property IsProjectOpen As Boolean read-only
Member of RegPro40.Project Returns
whether the current user has the project open

Boolean

0:1

IsDocBased

Property IsDocBased As Boolean read-only
Member of RegPro40.Requirement Returns
whether this requirement lives in a document

Boolean

01

HasTracesTo

Property HasTracesTo([ICount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has any traces to other
requirements. Optionally returns the number of
thesetraces.

Boolean

0:1

LockCount

Property LockCount AsLong read-only
Member of ReqPro40.Project Returns the
number of outstanding locks against the
Project.

String

0:1

Text

Property Text As String Member of
RegPro40.Requirement Returns or sets the
textual definition for thisrequirement

String

01

GetRequirement

Function GetRequirement(vRegL ookupValue,
[eRegLookupType As
enumRequirementL ookups =
eReqgLookup_Key], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags]) As Requirement
Member of ReqPro40.Project Returns the
object for the specified requirement

String

0:1

GetCurrentUsers

Function GetCurrentUsers() As Properties
Member of RegPro40.Project

String

0:1

166

Template Slots

Slotnan e

Documentation

Type

Zardinality

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has
administrative permissions

Boolean

0:1

IsLocked

Property IsLocked As Boolean read-only
Member of RegPro40.Project Returns avalue
indicating whether or not the Project is locked.

Boolean

01

HasTracesFrom

Property HasTracesFrom([ICount AsLong]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has any traces from other
requirements. Optionally returns the number of
thesetraces.

Boolean

01

Personal Catalog

Property PersonalCatalog As Catalog read-
only Member of RegPro40.Application
Returns the local Catalog object

String

0:1

NextVersionNumber

Property NextVersionNumber As String read-
only Member of RegPro40.Requirement
Returns the next sequential version number for

this requirement

String

01

TracesFrom

Property TracesFrom As Relationships read-
only Member of RegPro40.Requirement
Returns a Relationships object representing all
of the objects from which this requirement
traces

String

01

IsRoot

Property IsRoot As Boolean read-only
Member of ReqPro40.Requirement Returns
whether this requirement is a root requirement

Boolean

0:1

PermissionsForReqType

Property
PermissionsForReqType(lReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
requirements of the requirement type (data).

String

0:1

IsinDB

Property IsinDB(IKey As Long, elnterfacel D
As enumlinterfaceldentifiers, [sVersionNumber
As String]) AsBoolean read-only Member
of ReqPro40.Project Returns whether the
specified object is in the database

Boolean

0:1

WeightName

Property WeightName As String read-only
Member of RegPro40.Requirement Returns a
string representation of the weight of this object

String

01

DocKey

Property DocKey AsLong read-only
Member of ReqPro40.Requirement Returns
the key for the Document object associated
with this requirement (if any)

String

0:1

167

Template Slots

Slotnan e

Documentation

Type

Zardinality

IsPermittedFor

Property |sPermittedFor(ePermission As
enumPermissions, ePermissionFor As
enumPermissionTypes) As Boolean read-only
Member of ReqPro40.Requirement Returns
whether the specified permissions are permitted
for the specified permission type for the
currently logged in user. The ReqType,
ReqTraceability and ReqText permission types
are valid types for this interface

Boolean

0:1

VersionMinor

Property VersionMinor AsLong read-only
Member of ReqPro40.Application Returns
the minor version number of the application

String

01

EventRaiseEnabled

Property EventRaiseEnabled As Boolean
Member of RegPro40.Application Returns or
sets whether the server raises server events

Boolean

01

PermissionsFor ReqName

Property
PermissionsForRegName(IReqTypeKey As
Long) As enumPermissions read-only
Member of RegPro40.Project

String

0:1

PermissionsForListltemType

Property
PermissionsForListltemType(IReqTypeKey As
Long, IAttrKey AsLong, IListitemKey As
Long) AsenumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
ListitemValue of the Listltem type (data).

String

0:1

PermissionsForReqTraceability

Property
PermissionsForRegTraceability(IReqTypeK ey
AsLong) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
traceability of requirements of the requirement
type (data).

String

0:1

IsModified

Property IsModified As Boolean read-only
Member of ReqPro40.Views Returns whether
any of the Views in the collection have been
modified

Boolean

0:1

LogRelationshipRevisions

Property L ogRelationshipRevisions As Boolean
Member of RegPro40.Project Returns or sets
whether relationships are logged in Revisions

Boolean

01

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only
Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid
lock.

String

0:1

168

Template Slots

Slotnan e

Documentation

Type

Zardinality

RQSFilepath

Property RQSFilepath As String read-only
Member of ReqPro40.Project Returnsthe
pathname of the .rgsfile

String

0:1

VersionMajor

Property VersionMajor AsLong read-only
Member of ReqPro40.Application Returns
the major version number of the application

String

0:1

PermissionsFor

Property PermissionsFor(ePermissionFor As
enumPermissionTypes) As enumPermissions
read-only Member of ReqPro40.Requirement
Returns the permissions for the currently
logged in user for the permission type
specified. The ReqType, ReqTraceability and
ReqText permission types are valid types for
thisinterface.

String

01

DBState

Property DBState As String read-only
Member of ReqPro40.Requirement Returns
the state of the object in the underlying
datasource.

String

01

DBProperties

Property DBProperties As Object read-only
Member of ReqPro40.Project Returns the
properties for the project

String

0:1

AuthorID

Property AuthorID AsLong
Member of RegPro40.Project

read-only

String

0:1

AutoSuspect

Property AutoSuspect As Boolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean

0:1

TraceTo

Property TraceTo(vRelLookupValue,
[eRelLookupType As

enumRel ationshipL ookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns a Relationships object representing all
of the objects to which this requirement traces

String

0:1

ValidPackage

Function ValidPackage (IKey AsLong) As
Boolean Member of RegPro40.Project

Boolean

0:1

QueryValidate

Function QueryValidate(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) AsLong Member of
RegPro40.Project Checks the specified query
for correct syntax

String

01

SequenceKey

Property SequenceKey AsLong read-only
Member of ReqPro40.Project Returns the
sequence key for the project. The sequence key
is an incrementing number assigned as a project
is opened.

String

0:1

169

Template Slots

Slotnan e

Documentation

Type

Zardinality

CloseServer

Sub CloseServer() Member of
ReqPro40.Application Reserved

Any

0:1

PWD

Property PWD As String Member of
ReqPro40.Application Sets a default
password

String

0:1

TraceFrom

Property TraceFrom(vRelLookupV alue,
[eRelLookupType As

enumRel ationshipL ookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns the Relationship object for the
specified traced from object

String

0:1

HasParent

Property HasParent([ICount AsLong]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has a parent

Boolean

0:1

Revert

Sub Revert([bRevertAll As Boolean = False])
Member of RegPro40.Views Restores objects
tot heir state when originally created

Boolean

01

CompareVersionNumber

Function CompareV ersionNumber(sNumberl
As String, sNumber2 As String) Member of
ReqPro40.Application Compares version
numbers

String

0:1

UnlockProject

Sub UnlockProject(sGUID A s String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes alock from a
specific project.

String

01

UserKey

Property UserKey AsLong
Member of ReqPro40.Project
of the current user

read-only
Returns the key

String

0:1

PermissionsForAttr

Property PermissionsForAttr(IReqTypeKey As
Long, IAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project
Returns the current user's permissions for
editing the AttrValues of the Attr type (data).

String

0:1

IsProjectLocked

Property |sProjectL ocked(vProjLookupValue,
[eProjL ookuptype As enumProjectL ookups])
AsBoolean read-only Member of
ReqPro40.Application Determinesif a
specific project has any outstanding locks.

Boolean

0:1

ProjectLockCount

Property

ProjectL ockCount(vProjLookupValue,
[eProjLookuptype As enumProjectL ookups])
AslLong readonly Member of
ReaPro40.Application Returns the number of

String

0:1

170

Template Slots

Slot nan e Documentation Type | 'lardinality

ouststanding locks on a project object.

Property XMLVersion AsLong read-only

XML Verson Member of ReqPro40.Project String 01
Property TracesTo As Relationships read-
TracesTo only Member of RegPro40.Requirement String 01

Returns a Relationship object for the specified
traces to object

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enuminterfaceldentifiers, sGUID As String,
PublishAction | vEventData, eEventDataType As String 0:1
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqPro40.Application

Property Children As Relationships read-only
Member of RegPro40.Requirement Returns a
collection of Relationship objects representing
the children of this requirement

Children String 0:1

Function Display(eDisplayMode As
enumDisplayM odes, eDisplayType As
Display enumDisplayTypes) As Object Member of

ReqPro40.Requirement This method will
display arequirement dialog of the mode and
type received.

String 0:1

Property Bookmark As String read-only
Member of RegPro40.Requirement Returns
the bookmark associated with this requirement

(if any)

Bookmark String 0:1

Function GetDiscussions() As Discussions
Member of ReqPro40.Requirement Returns
the Discussions object associated with this
reguirement

GetDiscussions String 01

Property IsServerOpen As Boolean read-only
IsServerOpen | Member of RegPro40.Application Boolean |0:1
Determines whether the server is running

Property UserGroupKey AsLong read-only
UserGroupKey | Member of RegPro40.Project Returns the String 0:1
group of the current user

Property SetExclusiveAccess As Boolean

SetExclusiveAccess Member of RegPro40.Project Boolean |0:1
CLASSATTRVALUE
Template Slots
Slot nan e Documentation Type | 'lardinality

LogRelationshipRevisions| Property L ogRelationshipRevisions As Boolean |Boolean | 0:1

171

Template Slots

Slotnan e

Documentation

Type

Zardinality

Member of RegPro40.Project Returns or sets
whether relationships are logged in Revisions

PermissionsForAttr

Property PermissionsForAttr(IReqTypeKey As
Long, IAttrKey As Long) As enumPermissions
read-only Member of RegPro40.Project
Returns the current user's permissions for
editing the AttrValues of the Attr type (data).

String

0:1

AreProjectsLocked

Property AreProjectsLocked As Boolean
read-only Member of ReqPro40.Application

Boolean

01

GetRequirement

Function GetRequirement(vRegL ookupValue,
[eRegLookupType As
enumRequirementL ookups =

eReqgL ookup_Key], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags]) As Requirement
Member of RegPro40.Project Returnsthe
object for the specified requirement

String

0:1

Key

Property Key AsLong read-only Member
of ReqPro40.View Returns the unique key
associated with this view

Any

0:1

TracesFrom

Property TracesFrom As Relationships read-
only Member of ReqPro40.Requirement
Returns a Relationships object representing all
of the objects from which this requirement
traces

String

0:1

DocKey

Property DocKey AsLong read-only
Member of RegPro40.Requirement Returns
the key for the Document object associated
with this requirement (if any)

String

01

PermissionsFor ReqTraceability

Property
PermissionsForRegTraceability(IReqTypeK ey
AsLong) AsenumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
traceability of requirements of the requirement
type (data).

String

0:1

DBProperties

Property DBProperties As Object read-only
Member of ReqPro40.Project Returns the
properties for the project

String

01

UserKey

Property UserKey AsLong read-only
Member of ReqPro40.Project Returns the key
of the current user

String

0:1

Revert

Sub Revert([bRevertAll As Boolean = Falsg])
Member of ReqPro40.Views Restores objects
to their state when originally created

Boolean

0:1

172

Template Slots

Slotnan e

Documentation

Type

Zardinality

DocSaveFormat

Property DocSaveFormat As
enumDocSaveFormat Member of
RegPro40.Project Returns the document save
format

String

0:1

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has
administrative permissions

Boolean

0:1

VersionMajor

Property VersionMajor AsLong read-only
Member of ReqPro40.Application Returns
the major version number of the application

String

0:1

AssignParent

Function AssignParent(vRegL ookupValue,
[eRegLookupType As
enumRequirementL ookups =
eReqgLookup_Key]) As Requirement Member
of RegPro40.Requirement Changes the
requirement's parent or setstheit to the root
level.

String

0:1

IsPermitted

Property |sPermitted(ePermissions As
enumPermissions) As Boolean read-only
Member of RegPro40.View Returns whether
the current user has the specified permissions

Boolean

0:1

IsProjectOpen

Property IsProjectOpen As Boolean read-only
Member of RegPro40.Project Returns
whether the current user has the project open

Boolean

0:1

IsEdit

Property IsEdit AsBoolean read-only
Member of RegPro40.Attr Returns whether
the attribute is editable (not list or multiselect)

Boolean

0:1

AutoSuspect

Property AutoSuspect AsBoolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean

0:1

IsProjectLocked

Property |sProjectL ocked(vProjLookupValue,
[eProjL ookuptype As enumProjectL ookups])
AsBoolean read-only Member of
ReqPro40.Application Determinesif a
specific project has any outstanding locks.

Boolean

0:1

NewReqProCollection

Property NewReqgProCollection As
RegProCollection read-only Member of
ReqPro40.Project Returns a new
ReqProCollection object.

String

01

ReqTypeKey

Property ReqTypeKey AsLong read-only
Member of ReqPro40.Requirement Returns
the key for the ReqType object associated with
this requirement

String

0:1

PermissionsForListltemType

Property

String

0:1

173

Template Slots

Slotnan e

Documentation

Type

Zardinality

PermissionsForListitemType(IRegTypeKey As
Long, IAttrKey AsLong, IListitemKey As
Long) AsenumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
ListitemValue of the Listltem type (data).

HasTracesFrom

Property HasTracesFrom([ICount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has any traces from other
reguirements. Optionally returns the number of
thesetraces.

Boolean

0:1

IsDocBased

Property IsDocBased As Boolean read-only
Member of RegPro40.Requirement Returns
whether this requirement lives in a document

Boolean

01

DocPosition

Property DocPosition AsLong read-only
Member of ReqPro40.Requirement Returns
the position of the requirement within the
document.

String

0:1

Bookmark

Property Bookmark As String read-only
Member of RegPro40.Requirement Returns
the bookmark associated with this requirement

(if any)

String

01

GetCustomValue

Function GetCustomValue([hwWnd As Long],
[ITop AsLong], [ILeft As Long],
[sCurrentDisplayValue As String]) As Long
Member of ReqPro40.AttrValue Reserved for
future use.

String

01

Text

Property Text As String Member of
ReqPro40.Requirement Returns or sets the
textual definition for this requirement

String

0:1

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) Member of
ReqPro40.Project Executes the specified
query

Sring

0:1

Tag

Property Tag([eTagFormat As enumTagFormat
= eTagFormat_Tag]) As String read-only
Member of ReqPro40.Requirement Returns
thetag for this requirement

String

0:1

Action

Event Action(eEventType As
enumEventTypes, eObjectType As
enuminterfaceldentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As

Any

01

174

Template Slots

Slotnan e

Documentation

Type

Zardinality

enumEventSubTypes, sTimestamp As String)
Member of RegPro40.Application

WeightName

Property WeightName As String read-only
Member of ReqPro40.Requirement Returns a
string representation of the weight of this object

String

0:1

Count

Property Count AsLong read-only Member
of ReqPro40.Views Returns the number of
View objects in the collection

Any

0:1

Item

Property Item(vViewLookupValue,

[eViewL ookupType As enumViewL ookups =
eViewLookup_Key]) AsView read-only
Default member of ReqPro40.Views Returns
the specified View

Any

0:1

ChangelLoggedinUser

Function Changel oggedInUser(vValue,
[eUserL ookup As enumUserL ookups =
eUserLookups_Key], [vValue2]) As Boolean
Member of RegPro40.Project Changes the
user logged into the project.

Boolean

0:1

TraceTo

Property TraceTo(vRelLookupValue,
[eRelLookupType As

enumRel ationshi pL ookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns a Relationships object representing all
of the objects to which this requirement traces

String

0:1

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only
Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid
lock.

String

01

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vReqTypel ookupValue,
[eReqTypeLookupType As

enumReqTypesL ookups =
eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentReqL ookupV alue],

[eParentRegL ookupType As
enumRequirementL ookups =

eRegL ookup_Empty]) As Requirement
Member of ReqPro40.Project

String

0:1

DropObjects

Sub DropObjects(elnterfacel D As
enumlnterfaceldentifiers) Member of
ReqPro40.Project Removes collections from
the Project object

String

01

175

Template Slots

Slotnan e

Documentation

Type

Zardinality

DeleteRequirementHierarchy

Sub DeleteRequirementHierarchy([eDeleteFlag
As enumRequirementDeleteFlags =
eReqDelFlag_Empty],

[vNewParentL ookupValue],

[vNewParentL ookupType As
enumRequirementL ookups =
eReqLookup_Key]) Member of
ReqPro40.Requirement Deletes a requirement
from the project and provides options for
dealing with hierarchical children.

String

0:1

RefreshSecurity

Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves current security
information from the database

String

0:1

DataTypeName

Property DataTypeName As String read-only
Member of RegPro40.ListitemVaue Returns
the text for the datatype of the attribute
associated with the list item value

String

0:1

IsLocked

Property IsLocked As Boolean read-only
Member of RegPro40.Project Returns avalue
indicating whether or not the Project is locked.

Boolean

01

PWD

Property PWD As String Member of
ReqPro40.Application Sets a default
password

String

0:1

PermissionsForRegText

Property
PermissionsForRegText(IReqTypeKey As
Long) As enumPermissions read-only
Member of RegPro40.Project

String

0:1

IsinDB

Property ISInDB(IKey As Long, elnterfacelD
As enumlinterfacel dentifiers, [sVersionNumber
As String]) AsBoolean read-only Member
of ReqPro40.Project Returns whether the
specified object is in the database

Boolean

0:1

ProjectLockCount

Property

ProjectL ockCount(vProjLookupValue,

[eProjL ookuptype As enumProjectL ookups])
AsLong read-only Member of
ReqPro40.Application Returns the number of
ouststanding locks on a project object.

String

0:1

NextVersionNumber

Property NextVersionNumber As String read-
only Member of RegPro40.Requirement
Returns the next sequential version number for
this requirement

String

0:1

Refresh

Sub Refresh() Member of RegPro40.View

Any

0:1

GetPackage

Function GetPackage(IKey As Long, [eWeight
As enumPackageWeights =
ePackaoeWeiaht Emptvl) As Packaoe

String

0:1

176

Template Slots

Slotnan e

Documentation

Type

Zardinality

Member of RegPro40.Project

SuspectDateTime

Property SuspectDateTime As String read-
only Member of RegPro40.Requirement

String

0:1

Command

Function Command([vOne], [vTwo], [vThreg])
Member of RegPro40.Project Generic
Interface for providing additional functionality.

String

01

ResetAllListItemValues

Sub ResetAllListitemValues(bSelected As
Boolean) Member of ReqPro40.AttrValue
Selectsor deselects al list item values. If the
current user doesn't have update permissions
for any list item values, then none of the list
item values will be reset.

Boolean

0:1

PermissionsFor

Property PermissionsFor(ePermissionFor As
enumPermissionTypes) As enumPermissions
read-only Member of ReqPro40.Requirement
Returns the permissions for the currently
logged in user for the permission type
specified. The ReqType, ReqTraceability and
ReqText permission types are valid types for
thisinterface.

String

0:1

GetRootPackage

Function GetRootPackage([bL oadAll Packages
As Boolean = False]) As RootPackage
Member of RegPro40.Project

String

0:1

VersionRev

Property VersionRev AsLong read-only
Member of ReqPro40.Application Returns
the version revision number

String

0:1

VersionMinor

Property VersionMinor AsLong read-only
Member of ReqPro40.Application Returns
the minor version number of the application

String

01

XMLVersion

Property XMLVersion As Long
Member of ReqPro40.Project

read-only

String

01

Personal Catalog

Property PersonalCatalog As Catalog read-
only Member of ReqPro40.Application
Returns the local Catalog object

String

01

IsModified

Property IsModified As Boolean read-only
Member of RegPro40.Views Returns whether
any of the Views in the collection have been
modified

Boolean

0:1

LastOpenedDateTime

Property LastOpenedDateTime As String
read-only Member of RegPro40.Catal ogltem

String

0:1

TracesTo

Property TracesTo As Relationships read
only Member of RegPro40.Reguirement
Returns a Relationship object for the specified
traces to object

String

01

177

Template Slots

Slotnan e

Documentation

Type

Zardinality

PermissionsForDocType

Property
PermissionsForDocType(IDocTypeKey As
Long) AsenumPermissions read-only
Member of RegPro40.Project Returnsthe
current user's permissions for editing the
Documents of the Document type (data).

String

01

Level

Property Level AsLong read-only Member
of RegPro40.Requirement Returns the
hierarchical level of this requirement

Sring

01

Rank

read-only Member of
RegPro40.ListItemValue Returnsthe rank of
the list item associated with this list item value

String

01

Label

Property Label As String Member of
ReqPro40.Attr Returns or sets the attribute's
label value

String

0:1

ExtendedHelp

Sub ExtendedHel p(sProduct As String,
sSubTool As String, sltem As String,
sOperation As String, sQuery As String)
Member of ReqPro40.Application Launches
Rational Extended Help

String

01

ValidPackage

Function Vali dPackage_(IKey AsLong) As
Boolean Member of RegPro40.Project

Boolean

0:1

GetRequirementsCount

Function

GetRequirementsCount(vReqgsL ookupValue,
[eRegsLookupType As

enumRequirementsL ookups =
eReqsLookup_ReqTypeKey]) AsLong
Member of RegPro40.Project Returnsthe
count of records returned by a query.

String

01

User GroupKey

Property UserGroupKey AsLong read-only
Member of ReqPro40.Project Returns the
group of the current user

String

01

Children

Property Children As Relationships read-only
Member of RegPro40.Requirement Returns a
collection of Relationship objects representing
the children of this requirement

String

0:1

GetDiscussions

Function GetDiscussions() As Discussions
Member of RegPro40.Requirement Returns
the Discussions object associated with this
reguirement

String

01

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionValue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties
Member of ReaPro40.Application Opens a

String

01

178

Template Slots

Slotnan e

Documentation

Type

Zardinality

RequisitePro project and returns its properties

LockCount

Property LockCount AsLong read-only
Member of ReqPro40.Project Returns the
number of outstanding locks against the
Project.

String

01

CloseServer

Sub CloseServer() Member of
ReqPro40.Application Reserved

Any

0:1

SecurityEnabled

Property SecurityEnabled As Boolean
Member of ReqPro40.Project Returns or sets
whether security is enabled for the project

Boolean

0:1

Author|D

Property AuthorID AsLong
Member of RegPro40.Project

read-only

String

0:1

PermissionsForReqType

Property
PermissionsForReqType(IReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
requirements of the requirement type (data).

String

01

VersionDBSchema

read-
Returns

Property VersionDBSchema As Long
only Member of RegPro40.Project
the database schema version number

String

01

GetDiscussionltem

Function GetDiscussionltem(IKey AsLong) As
Object Member of RegPro40.Project
Returns the specified discussion or response

String

01

LockProject

Function LockProject(vProjLookupValue,
[eProjL ookuptype As enumProjectL ookups])
As String Member of RegPro40.Application
L ocks a specific open project.

String

0:1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes alock from a
specific project.

String

0:1

TraceFrom

Property TraceFrom(vRelLookupValue,
[eRelLookupType As

enumRel ationshi pL ookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns the Relationship object for the
specified traced from object

String

0:1

DBState

Property DBState As String read-only
Member of ReqPro40.Requirement Returns
the state of the object in the underlying
datasource.

String

0:1

DataType

Property DataType As enumAttrDataTypes

String

01

179

Template Slots

Slotnan e

Documentation

Type

Zardinality

read-only Member of
ReqPro40.ListitemValue Returnsthe data
type of the attribute associated with the list item
vaue

SequenceKey

Property SequenceKey AsLong read-only
Member of ReqPro40.Project Returns the
seguence key for the project. The sequence key
is an incrementing number assigned as a project
is opened.

String

0:1

IsPermittedFor

Property |sPermittedFor(ePermission As
enumPermissions, ePermissionFor As
enumPermissionTypes) As Boolean read-only
Member of ReqPro40.Requirement Returns
whether the specified permissions are permitted
for the specified permission type for the
currently logged in user. The ReqType,
ReqTraceability and ReqText permission types
arevalid types for thisinterface

Boolean

0:1

HasParent

Property HasParent([ICount AsLong]) As
Boolean read-only Member of
RegPro40.Requirement Returns whether this
requirement has a parent

Boolean

0:1

PermissionsFor ReqName

Property
PermissionsForRegName(IReqTypeKey As
Long) As enumPermissions read-only
Member of RegPro40.Project

String

0:1

EventRaiseEnabled

Property EventRaiseEnabled As Boolean
Member of ReqPro40.Application Returns or
sets whether the server raises server events

Boolean

0:1

|sOpenedExclusive

Property |sOpenedExclusive As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has opened the
project exclusively

Boolean

01

SetExclusiveAccess

Property SetExclusiveAccess As Boolean
Member of RegPro40.Project

Boolean

0:1

GetCurrentUsers

Function GetCurrentUsers() As Properties
Member of RegPro40.Project

String

01

QueryValidate

Function QueryValidate(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) AsLong Member of
ReqPro40.Project Checks the specified query
for correct syntax

String

0:1

GetRequirements

Function
GetRequirements(vRegsL ookupV alue,
[eRegsLookupType As

String

0:1

180

Template Slots

Slotnan e

Documentation

Type

Zardinality

enumRequirementsL ookups =
eReqsLookup_ReqTypeKey], [eWeight As
enumRegquirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags], [IPageSize As Long =
1000], [IPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returns the
reguirementsin the project

Child

Property Child(vRelLookupValue,
[eRelLookupType As

enumRel ationshipL ookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns the Relationship object for the
specified child of this requirement

String

0:1

Flags

Property Flags As enumReguirementFlags
read-only Member of RegPro40.Requirement
Returns the EnumRequirementFlags object
associated with this requirement

String

0:1

IsOpenedReadOnly

Property 1sOpenedReadOnly As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has opend the
project read only

Boolean

01

HasTracesTo

Property HasTracesTo([ICount AsLong]) As
Boolean read-only Member of
RegPro40.Reguirement Returns whether this
requirement has any traces to other
requirements. Optionally returns the number of
thesetraces.

Boolean

01

Personal Catal ogltem

Property

Personal Catal ogltem(vCatL ookupValue,
[eCatL ookupType As enumCatal ogL ookups =
eCatLookup_Name]) As Catalogltem read-
only Member of RegPro40.Application
Returns the specified catalog item from the
Local catalog collection

String

0:1

I sSAutoSuspect

Property IsAutoSuspect As Boolean read-
only Member of ReqPro40.AttrValue
Returns whether changes to the attribute value
will cause traceability relations to be suspect

Boolean

0:1

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enumlnterfaceldentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqgPro40.Application

String

01

181

Template Slots

Slotnan e

Documentation

Type

Zardinality

GetCurrentProjectUsers

Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqgPro40.Application

String

0:1

Version

Property Version As String read-only
Member of ReqPro40.Application Returns
the version of the application

String

0:1

Display

Function Display(eDisplayMode As
enumDisplayModes, eDisplayType As
enumDisplayTypes) As Object Member of
ReqPro40.Requirement This method will
display arequirement dialog of the mode and
type received.

String

0:1

IsNew

Property IsNew As Boolean read-only
Member of ReqPro40.Requirement Indicates
if the requirement is not new.

Boolean

0:1

Compar eVersionNumber

Function CompareV ersionNumber(sNumberl
As String, sNumber2 As String) Member of
ReqPro40.Application Compares version
numbers

String

0:1

oCustomTypes

Property CustomTypes As CustomTypes
read-only Member of ReqPro40.Application
Reserved for future use.

String

01

IsRoot

Property IsRoot As Boolean read-only
Member of RegPro40.Requirement Returns
whether this requirement is a root regquirement

Boolean

0:1

Save

Sub Save() Member of ReqPro40.Views
Save al Views that have changed to the
database

Any

0:1

SelectedListltemValue

Property SelectedListitemVaue As
ListitemValue read-only Member of
ReqPro40.AttrValue Returnsthe list item that
is selected

String

01

RQSFilepath

Property RQSFilepath As String read-only
Member of ReqPro40.Project Returns the
pathname of the .rgsfile

String

0:1

1sServerOpen

Property IsServerOpen As Boolean
Member of RegPro40.Application
Determines whether the server isrunning

read-only

Boolean

0:1

CLASSRELATIONSHIPS

Template Slots

Slotnan e

Documentation

Type

Cardinality

RQSFilepath

Property RQSFilepath As String read-only
Member of ReqPro40.Project Returnsthe
pathname of the .rgsfile

String

0:1

182

Template Slots

Slotnan e

Documentation

Type

Zardinality

Tag

Property Tag([eTagFormat As enumTagFormat
= eTagFormat_Tag]) As String read-only
Member of RegPro40.Requirement Returns
the tag for this requirement

String

0:1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes alock from a
specific project.

String

0:1

LogRelationshipRevisions

Property LogRelationshipRevisions As Boolean
Member of RegPro40.Project Returns or sets
whether relationships are logged in Revisions

Boolean

01

GetCurrentRelationship

Function GetCurrentRelationship() As
Relationship Member of
ReqgPro40.Relationships Returns the
Relationship object at the current cursor
position

String

0:1

Personal Catalog

Property PersonalCatalog As Catalog read-
only Member of RegPro40.Application
Returns the local Catalog object

String

0:1

Refresh

Sub Refresh() Member of RegPro40.Vi ew

Any

01

PermissionsForListltemType

Property
PermissionsForListltemType(IReqTypeKey As
Long, IAttrKey AsLong, IListitemKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
ListitemValue of the Listltem type (data).

String

0:1

IsinDB

Property IsinDB(IKey As Long, elnterfacelD
As enuminterfacel dentifiers, [sVersionNumber
As String]) AsBoolean read-only Member
of ReqPro40.Project Returns whether the
specified obj ect isin the database

Boolean

01

DropObjects

Sub DropObjects(elnterfacel D As
enumlnterfaceldentifiers) Member of
ReqPro40.Project Removes collections from
the Project object

String

0:1

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only
Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid
lock.

String

0:1

CloseServer

Sub CloseServer() Member of
ReqPro40.Application Reserved

Any

0:1

183

Template Slots

Slotnan e

Documentation

Type

Zardinality

RefreshSecurity

Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves current security
information from the database

String

0:1

PermissionsForAttr

Property PermissionsForAttr(IReqTypeKey As
Long, IAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project
Returns the current user's permissions for
editing the AttrValues of the Attr type (data).

String

01

NewRegProCollection

Property NewReqgProCollection As
RegProCollection read-only Member of
RegPro40.Project Returns anew
ReqgProCollection object.

String

01

IsLocked

Property IsLocked As Boolean read-only
Member of ReqPro40.Project Returns avalue
indicating whether or not the Project is locked.

Boolean

0:1

Author|D

Property AuthorlD AsLong
Member of RegPro40.Project

read-only

String

0:1

ValidPackage

Function ValidPackage (IKey AsLong) As
Boolean Member of RegPro40.Project

Boolean

01

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean
read-only Member of RegPro40.Project
Returns whether the current user has
administrative permissions

Boolean

0:1

LockCount

Property LockCount AsLong read-only
Member of ReqPro40.Project Returns the
number of outstanding locks against the
Project.

String

01

UserKey

Property UserKey AsLong
Member of ReqPro40.Project
of the current user

read-only
Returns the key

String

0:1

VersionDBSchema

read-
Returns

Property VersionDBSchema As Long
only Member of RegPro40.Project
the database schema version number

String

0:1

|sOpenedExclusive

Property |sOpenedExclusive As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has opened the
project exclusively

Boolean

01

MoveFirst

Sub MoveFirst() Member of ReqPro40.Views
Sets the current position in the collection to the
first item

Any

0:1

TraceTo

Property TraceTo(vRelLookupValue,
[eRelLookupType As

enumRel ationshi pL ookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement

String

01

184

Template Slots

Slotnan e

Documentation

Type

Zardinality

Returns a Relationships object representing all
of the objects to which this requirement traces

Movel ast

Sub MovelLast() Member of RegPro40.Views
Sets the current position in the collection to the
last item

Any

0:1

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) Member of
ReqPro40.Project Executes the specified
query

String

01

VersionMinor

Property VersionMinor AsLong read-only
Member of ReqPro40.Application Returns
the minor version number of the application

String

01

PermissionsForRegText

Property
PermissionsForRegText(IReqTypeKey As
Long) As enumPermissions read-only
Member of RegPro40.Project

String

0:1

GetRequirement

Function GetRequirement(vReqgL ookupValue,
[eRegLookupType As
enumRequirementL ookups =
eReqLookup_Key], [eWeight As
enumRegquirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags]) As Requirement
Member of RegPro40.Project Returns the
object for the specified requirement

String

01

LockProject

Function LockProject(vProjLookupValue,
[eProjLookuptype As enumProjectL ookups])
As String Member of RegPro40.Application
L ocks a specific open project.

String

0:1

ItemCurrent

Property ItemCurrent As Document read-only
Member of ReqPro40.Views Returnsthe
Document associated with the current item

Any

0:1

Child

Property Child(vRelLookupValue,
[eRelLookupType As

enumRel ationshi pL ookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns the Relationship object for the
specified child of this requirement

String

0:1

SecurityEnabled

Property SecurityEnabled As Boolean
Member of RegPro40.Project Returnsor sets
whether security is enabled for the project

Boolean

0:1

Version

Property Version As String read-only
Member of ReaPro40.Application Returns

String

0:1

185

Template Slots

Slotnan e

Documentation

Type

Zardinality

the version of the application

NextVersionNumber

Property NextVersionNumber As String read-
only Member of RegPro40.Requirement
Returns the next sequential version number for

this requirement

String

01

MovePrevious

Sub MovePrevious() Member of
ReqPro40.Views Set the current position in
the collection to the previous item

Any

0:1

QueryValidate

Function QueryValidate(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) AsLong Member of
ReqPro40.Project Checks the specified query
for correct syntax

String

0:1

PermissionsForReqType

Property
PermissionsForReqType(IReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
reguirements of the requirement type (data).

String

0:1

GetPackage

Function GetPackage(IKey As Long, [eWeight
As enumPackageWeights =
ePackageWeight_Empty]) As Package
Member of RegPro40.Project

String

0:1

Display

Function Display(eDisplayMode As
enumDisplayModes, eDisplayType As
enumDisplayTypes) As Object Member of
RegPro40.Requirement This method will
display arequirement dialog of the mode and
type received.

String

0:1

DocSaveFormat

Property DocSaveFormat As
enumDocSaveFormat Member of
ReqPro40.Project Returns the document save
format

String

0:1

DBProperties

Property DBProperties As Object read-only
Member of ReqPro40.Project Returns the
properties for the project

String

01

TracesFrom

Property TracesFrom As Relationships read-
only Member of RegPro40.Requirement
Returns a Relationships object representing all
of the objects from which this requirement
traces

String

0:1

PWD

Property PWD As String Member of
ReqPro40.Application Sets a default
password

String

0:1

186

Template Slots

Slotnan e

Documentation

Type

Zardinality

IsRoot

Property IsRoot As Boolean read-only
Member of ReqPro40.Requirement Returns
whether this requirement is a root requirement

Boolean

0:1

IsDocBased

Property IsDocBased As Boolean read-only
Member of ReqPro40.Requirement Returns
whether this requirement lives in a document

Boolean

0:1

DBState

Property DBState As String read-only
Member of RegPro40.Requirement Returns
the state of the object in the underlying
datasource.

String

01

TraceFrom

Property TraceFrom(vRelLookupValue,
[eRelLookupTypeAs

enumRel ationshipL ookups =
eRelLookup_DerivedKey]) As Relationship
read-only Member of ReqPro40.Requirement
Returns the Relationship object for the
specified traced from object

String

0:1

DeleteRequirementHierarchy

Sub DeleteRequirementHierarchy([eDel eteFlag
As enumRequirementDel eteFlags =
eReqDelFlag_Empty],

[vNewParentL ookupValue],

[vNewParentL ookupType As
enumRequirementL ookups =
eRegLookup_Key]) Member of
ReqPro40.Requirement Deletes a requirement
from the project and provides options for
dealing with hierarchical children.

String

0:1

HasParent

Property HasParent([ICount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
reguirement has a parent

Boolean

0:1

Bookmark

Property Bookmark As String read-only
Member of ReqPro40.Requirement Returns
the bookmark associated with this requirement
(if any)

String

0:1

Delete

Sub Delete(vViewL ookupValue,
[eViewLookupType As enumViewl ookups =
eViewLookup_Key]) Member of
RegPro40.Views Deletes the specified view
fromthe project

Any

0:1

HasTracesTo

Property HasTracesTo([ICount As Long]) As
Boolean read-only Member of
ReqPro40.Requirement Returns whether this
requirement has any traces to other
requirements. Optionally ret urns the number of
thesetraces.

Boolean

0:1

187

Template Slots

Slotnan e

Documentation

Type

Zardinality

HasTracesFrom

Property HasTracesFrom([ICount AsLong]) As
Boolean read-only Member of
RegPro40.Reguirement Returns whether this
requirement has any traces from other
requirements. Optionally returns the number of
thesetraces.

Boolean

01

Count

Property Count AsLong read-only Member
of RegPro40.Views Returns the number of
View objects in the collection

Any

01

VersionMajor

Property VersionMajor AsLong read-only
Member of ReqPro40.Application Returns
the major version number of the application

String

01

PermissionsFor ReqName

Property
PermissionsForRegName(IReqTypeKey As
Long) As enumPermissions read-only
Member of RegPro40.Project

String

0:1

ISEOF

Property ISEOF As Boolean read-only
Member of ReqPro40.Views Returns whether
the end of the collection has been reached

Boolean

01

IsOpenedReadOnly

Property 1sOpenedReadOnly As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has opend the
project read only

Boolean

0:1

Save

Sub Save() Member of ReqPro40.Views
Save al Views that have changed to the
database

Any

0:1

Personal Catal ogltem

Property

Personal Catal ogltem(vCatL ookupV alue,
[eCatL ookupType As enumCatal ogL ookups =
eCatL ookup_Name]) As Catalogltem read-
only Member of ReqPro40.Application
Returns the specified catalog item from the
Local catalog collection

String

0:1

Compar eVersionNumber

Function CompareV ersionNumber(sNumber1
As String, sNumber2 As String) Member of
RegPro40.Application Compares version
numbers

String

0:1

IsPermittedFor

Property |sPermittedFor(ePermission As
enumPermissions, ePermissionFor As
enumPermissionTypes) As Boolean read-only
Member of ReqPro40.Requirement Returns
whether the specified permissions are permitted
for the specified permission type for the
currently logged in user. The ReqType,
ReqTraceability and ReqText permission types
arevalid types for thisinterface

Boolean

0:1

188

Template Slots

Slotnan e

Documentation

Type

Zardinality

IsInKeyset

Property IdnKeyset(IKey AsLong) As
Boolean read-only Member of
RegPro40.Views Returns whether the
specified key isin the collection

Boolean

0:1

Suspect

Property Suspect As Boolean Member of
ReqPro40.Relationships Sets all Relationship
objects in the collection to suspect

Boolean

01

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionValue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties
Member of ReqPro40.Application Opensa
RequisitePro project and returns its properties

String

01

User GroupKey

Property UserGroupKey AsLong read-only
Member of ReqPro40.Project Returns the
group of the current user

String

01

Item

Property Item(vViewLookupValue,
[eViewLookupType As enumVi ewL ookups =
eViewLookup_Key]) AsView read-only
Default member of ReqPro40.Views Returns
the specified View

Any

0:1

RelationshipType

Property RelationshipType As
enumRelationshipTypes read-only Member
of RegPro40.Relationships Returns an
enumerated value indicating the type of the
Relationship objectsin this collection

String

0:1

ProjectLockCount

Property

ProjectL ockCount(vProjLookupValue,
[eProjLookuptype As enumProjectL ookups])
AsLong read-only Member of
ReqgPro40.Application Returns the number of
ouststanding locks on a project object.

String

0:1

Action

Event Action(eEventType As
enumEventTypes, eObjectType As
enuminterfacel dentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
Member of RegPro40.Application

Any

0:1

IsProjectOpen

Property IsProjectOpen As Boolean read-only
Member of ReqPro40.Project Returns
whether the current user has the project open

Boolean

0:1

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vRegTypeL ookupValue,
[eReqTypeLookupType As

String

0:1

189

Template Slots

Slotnan e

Documentation

Type

Zardinality

enumReqTypesL ookups =
eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentRegL ookupValue],

[eParentReqL ookupType As
enumRequirementL ookups =

eReqL ookup_Empty]) As Requirement
Member of RegPro40.Project

GetRequirements

Function

GetRequirements(vRegsL ookupV alue,
[eRegsLookupType As

enumRequirementsL ookups =
eReqsLookup_ReqTypeKey], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumReguirementFlags], [IPageSize As Long =
1000], [IPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returnsthe
reguirementsin the project

String

01

WeightName

Property WeightName As String read-only
Member of ReqPro40.Requirement Returns a
string representation of the weight of this object

String

0:1

ISBOF

Property ISBOF As Boolean read-only
Member of RegPro40.Views Returns whether
the current position represents the beginning of

Any

01

GetDiscussionltem

Function GetDiscussionltem(IKey AsLong) As
Object Member of ReqPro40.Project
Returns the specified discussion or response

String

0:1

MoveNext

Sub MoveNext() Member of
ReqPro40.Views St the current position in
the collection to the next item

Any

0:1

GetCurrentUsers

Function GetCurrentUsers() As Properties
Member of RegPro40.Project

String

0:1

I sProjectLocked

Property IsProjectL ocked(vProjL ookupValue,
[eProjLookuptype As enumProjectL ookups])
AsBoolean read-only Member of
ReqPro40.Application Determinesif a
specific project has any outstanding locks.

Boolean

01

DirectionName

Property DirectionName As String read-only
Member of ReqPro40.Relationships Returns
the name of the direction of the relationship
objects held by this collection (tracesto,
tracesfrom, child, or parent)

String

01

RelationshipTypeName

Property RelationshipTypeName As String
read-only Member of ReqPro40.Relationships

Retiirns the name of the Relatinnshin nhiectsin

String

0:1

190

Template Slots

Slotnan e

Documentation

Type

Zardinality

this collection

Command

Function Command([vOne], [vTwo], [vThree])
Member of ReqPro40.Project Generic
Interface for providing additional functionality.

String

01

GetRootPackage

Function GetRootPackage([bL oadAll Packages
As Boolean = False]) As RootPackage
Member of RegPro40.Project

String

0:1

Text

Property Text As String Member of
ReqPro40.Requirement Returns or sets the
textual definition for this requirement

String

0:1

AutoSuspect

Property AutoSuspect As Boolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean

0:1

ChangelLoggedInUser

Function Changel oggedInUser(vValue,
[eUserL ookup As enumUserL ookups =
eUserLookups_Key], [vVaue2]) AsBoolean
Member of RegPro40.Project Changes the
user logged into the project.

Boolean

0:1

PermissionsForDocType

Property
PermissionsForDocType(IDocTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
Documents of the Document type (data).

String

0:1

AreProjectsLocked

Property AreProjectsLocked As Boolean
read-only Member of ReqPro40.Application

Boolean

01

PermissionsFor

Property PermissionsFor(ePermissionFor As
enumPermissionTypes) As enumPermissions
read-only Member of ReqPro40.Requirement
Returns the permissions for the currently
logged in user for the permission type
specified. The ReqType, ReqTraceability and
ReqText permission types are valid types for
this interface.

String

01

AssignParent

Function AssignParent(vRegL ookupV alue,
[eRegLookupType As
enumRequirementL ookups =
eRegLookup_Key]) As Requirement Member
of ReqPro40.Requirement Changes the
requirement's parent or setsthe it to the root
level.

String

01

GetCurrentProjectUsers

Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
RegPro40.Application

String

01

TracesTo

Property TracesTo As Relationships read-

String

0:1

191

Template Slots

Slotnan e

Documentation

Type

Zardinality

only Member of ReqPro40.Requirement
Returns a Relationship object for the specified
traces to object

SuspectDateTime

Property SuspectDateTime As String read-
only Member of RegPro40.Reguirement

String

0:1

XMLVersion

Property XMLVersion As Long
Member of RegPro40.Project

read-only

String

0:1

CurrentDerivedKey

Property CurrentDerivedKey As String read-
only Member of RegPro40.Relationships
Returns the derived key of the Relationship
pointed to by CurrentPosition()

String

0:1

IsNew

Property IsNew As Boolean read-only
Member of RegPro40.Requirement Indicates
if the requirement is not new.

Boolean

01

DocPosition

Property DocPosition AsLong read-only
Member of ReqPro40.Requirement Returns
the position of the requirement wit hin the
document.

String

0:1

SequenceKey

Property SequenceKey AsLong read-only
Member of ReqPro40.Project Returns the
sequence key for the project. The sequence key
is an incrementing number assigned as a project
is opened.

String

0:1

Children

Property Children As Relationships read-only
Member of RegPro40.Reguirement Returns a
collection of Relationship objects representing
the children of this requirement

String

01

EventRaiseEnabled

Property EventRaiseEnabled As Boolean
Member of RegPro40.Application Returns or
sets whether the server raises server events

Boolean

0:1

IsModified

Property IsModified As Boolean read-only
Member of ReqPro40.Views Returns whether
any of the Views in the collection have been
modified

Boolean

01

Revert

Sub Revert([bRevertAll As Boolean = Falsg])
Member of ReqPro40.Views Restores objects
to their state when originally created

Boolean

0:1

DocKey

Property DocKey AsLong read-only
Member of ReqPro40.Requirement Retur ns
the key for the Document object associated
with this requirement (if any)

String

0:1

oCustomTypes

Property CustomTypes As CustomTypes
read-only Member of ReqPro40.Application
Reserved for future use.

String

01

192

Template Slots

Slotnan e

Documentation

Type

Zardinality

ExtendedHelp

Sub ExtendedHel p(sProduct As String,
sSubTool As String, sltem As String,
sOperation As String, sQuery As String)
Member of ReqPro40.Application Launches
Rational Extended Help

String

01

PermissionsFor ReqTraceability

Property
PermissionsForReqTraceability(IReqgTypeK ey
AsLong) AsenumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
traceability of requirements of the requirement
type (data).

String

0:1

Flags

Property Flags As enumRequirementFlags
read-only Member of ReqPro40.Requirement
Returns the EnumRequirementFlags object
associated with this requirement

String

0:1

SetExclusiveAccess

Property SetExclusiveAccess As Boolean
Member of RegPro40.Project

Boolean

0:1

Add

Function Add(sName As String, eViewType As
enumViewTypes, sPrimaryQueryString As
String, ePrimaryQueryStringFormat As
enumQueryFormats, [sSecondaryQueryString
As String], [eSecondaryQueryStringFormat As
enumQueryFormats], [sPropertyString As
String], [sDescription As String],
[sVersionReason As String], [eViewVisibility
AsenumViewVisibility = 1]) As View
Member of ReqPro40.Views Addsthe
specified view to the collection

String

01

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enumlnterfacel dentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqPro40.Application

String

0:1

GetRequirementsCount

Function

GetRequirementsCount(vReqgsL ookupValue,
[eRegsL ookupType As

enumRequirementsL ookups =
eReqsLookup_ReqTypeKey]) AsLong
Member of ReqPro40.Project Returns the
count of records returned by a query.

String

0:1

Level

Property Level AsLong read-only Member
of RegPro40.Requirement Returns the
hierarchical level of this requirement

String

01

GetDiscussions

Function GetDiscussions() As Discussions

String

01

193

Template Slots

Slot nan e Documentation Type | 'lardinality
' Member of RegPro40.Requirement Returns
the Discussions object associated with this
reguirement
' Property IsServerOpen As Boolean read-only
IsServer Open | Member of ReqPro40.Application Boolean |0:1

Determines whether the server isrunning

CurrentPosition

Property CurrentPosition AsLong Member of
ReqPro40.Views Returns or sets the current |Any
cursor position within the collection

01

VersionRev

Property VersionRev AsLong read-only

Member of ReqPro40.Application Returns String 0:1

the version revision number

CLASSRELATIONSHIP

Template Slots

Slot nan e

Documentation

Type |Cardinality |

GetCurrentProjectUsers

Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqPro40.Application

String 0:1

ItemCurrent

Property ItemCurrent As Document read-only
Member of ReqPro40.Views Returnsthe
Document associated with the current item

Any 01

CompareVersionNumber

Function CompareV ersionNumber(sNumberl As
String, sSNumber2 As String) Member of
RegPro40.Application Compares version numbers

String 0:1

Ta

«Q

Property Tag([eTagFormat As enumTagFormat =
eTagFormat_Tag]) As String read-only Member
of RegPro40.Requirement Returnsthe tag for this
reguirement

String 01

IsLocked

Property IsLocked As Boolean read-only
Member of ReqPro40.Project Returns avalue
indicating whether or not the Project is |ocked.

Boolean |0:1

AutoSuspect

Property AutoSuspect As Boolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean |0:1

Child

Property Child(vRelLookupValue,
[eRelLookupType As enumRel ationshipL ookups =
eRelLookup_DerivedKey]) As Relationship read-
only Member of ReqPro40.Requirement Returns
the Relationship object for the specified child of this
reguirement

String 0:1

DocSaveFormat

Property DocSaveFormat As enumbDocSaveFormat
Member of RegPro40.Project Returnsthe
document save format

String 0:1

194

Template Slots

Slot nan e

Documentation

Type

Cardinality |

RQSFilepath

Property RQSFilepath As String read-only
Member of ReqPro40.Project Returnsthe
pathname of the .rgsfile

String

01

IsProjectOpen

Property IsProjectOpen As Boolean read-only
Member of ReqPro40.Project Returns whether the
current user has the project open

Boolean

01

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enumlnterfaceldentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDat aTypes, eEventSubType As
enumEventSubTypes) Member of
ReqPro40.Application

String

01

QueryValidate

Function QueryValidate(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) AsLong Member of
ReqPro40.Project Checks the specified query for
correct syntax

String

01

Revert

Sub Revert([bRevertAll As Boolean = False])
Member of RegPro40.Views Restores objects to
their state when originally created

Boolean

01

VersionDBSchema

Property VersionDBSchema AsLong read-only
Member of ReqPro40.Project Returns the database
schema version number

String

01

LockCount

Property LockCount AsLong read-only
Member of ReqPro40.Project Returns the number
of outstanding locks against the Project.

String

01

DocKey

Property DocKey AsLong read-only Member of
ReqPro40.Requirement Returns the key for the
Document object associated with this requirement

(if any)

String

01

SourceRelKey

Property SourceRelKey AsLong read-only
Member of RegPro40.Relationship Returns the
key of the relationship in the project of the source
Requirement.

String

01

RelationshipType

Property RelationshipType As
enumRelationshipTypes read-only Member of
ReqPro40.Relationships Returns an enumerated
value indicating the type of the Relationship objects
in this collection

String

01

Flags

Property Flags As enumRequirementFlags read-
only Member of RegPro40.Requirement Returns
the EnumRequirementFlags object associated with
this requirement

String

01

195

Template Slots

Slot nan e

Documentation

Type

Cardinality |

SetExclusiveAccess

Property SetExclusiveAccess As Boolean Member
of RegPro40.Project

Boolean

01

SourceRequirement

Property SourceRequirement([eWeight As
enumRequirementsWeights = eReqWeight_Empty])
AsRequirement read-only Member of
RegPro40.Relationship Returns the source
Requirement object

String

01

Version

Property Version As String read-only Member
of ReqPro40.Application Returns the version of
the application

String

01

HasTracesFrom

Property HasTracesFrom([ICount As Long]) As
Boolean read-only Member of
RegPro40.Requirement Returns whether this
requirement has any traces from other requirements.
Optionally returns the number of these traces.

Boolean

01

SequenceKey

Property SequenceKey AsLong read-only
Member of ReqPro40.Project Returns the
seguence key for the project. The sequence key isan
incrementing number assigned as a project is
opened.

String

01

SourceProject

Property SourceProject As Project read-only
Member of ReqPro40.Relationship Returns the
Project object associated with the source
Requirement

String

01

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vRegTypeL ookupValue,
[eRegTypeL ookupType AsenumReqTypesL ookups
= eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],

[vParentReqL ookupValue],

[eParentRegL ookupType As

enumRequirementL ookups = eReqL ookup_Empty])
As Requirement Member of ReqPro40.Project

String

01

Action

Event Action(eEventType As enumEventTypes,
eObjectType As enumlnterfacel dentifiers, sGUID
As String, VEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
Member of ReqPro40.Application

Any

01

Personal Catalog

Property PersonalCatalog As Catalog read-only
Member of RegPro40.Application Returnsthe
local Catalog object

String

01

Level

Property Level AsLong
ReqgPro40.Requirement
level of thisrequirement

read-only Member of
Returns the hierarchical

String

01

GetRootPackage

Function GetRootPackage([bL cadAllPackages As

String

01

196

Template Slots

Slot nan e

Documentation

Type

Cardinality |

Boolean = False]) As RootPackage Member of
ReqPro40.Project

Author|D

Property AuthorID As Long
of RegPro40.Project

read-only Member

String

01

CurrentDerivedKey

Property CurrentDerivedKey As String read-only
Member of RegPro40.Relationships Returns the
derived key of the Relationship pointed to by
CurrentPosition()

String

01

Delete

Sub Delete(vViewLookupValue,
[eViewLookupType As enumViewL ookups =
eViewLookup_Key]) Member of RegPro40.Views
Deletes the specified view from the project

Any

01

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
RegPro40.Application Removes alock from a
specific project.

String

01

IsvalidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectL ookups]) As Boolean read-only
Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid lock.

String

01

DestinationProject

Property DestinationProject As Project read-only
Member of ReqPro40.Relationship Returns the
Project object associated with the destination
Requirement

String

01

Command

Function Command([vOne], [vTwo], [vThree])
Member of RegPro40.Project Generic Interface
for providing additional functionality.

String

01

PermissionsFor RegText

Property PermissionsForReqText(IRegTypeKey As
Long) As enumPermissions read-only Member
of RegPro40.Project

String

01

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionVal ue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties Member
of ReqPro40.Application Opens a RequisitePro
project and returns its properties

String

01

I1sCrossProject

Property IsCrossProject As Boolean read-only
Member of RegPro40.Relationship Returns
whether this Relationship object represent a cross
project relationship

Boolean

01

GetPackage

Function GetPackage(IKey AsLong, [eWeight As
enumPackaaoeWeiahts = ePackaaeWeiaht Emotv])

String

01

197

Template Slots

Slot nan e

Documentation

Type

Cardinality |

As Package Member of ReqPro40.Project

oCustomTypes

Property CustomTypes As CustomTypes read-
only Member of ReqPro40.Application

Reserved for future use.

String

01

ExtendedHelp

Sub ExtendedHelp(sProduct As String, sSubTool
As String, sltem As String, sOperation As String,
sQuery As String) Member of
RegPro40.Application Launches Rational
Extended Help

String

01

Personal Catalogltem

Property Personal Catal ogltem(vCatL ookupV alue,
[eCatL ookupType As enumCatal ogL ookups =
eCatlL ookup_Name]) As Catalogltem read-only
Member of ReqPro40.Application Returnsthe
specified catalog item from the Local catalog
collection

Sring

01

GetRequirementsCount

Function

GetRequirementsCount(vReqgsL ookupValue,
[eRegsL ookupType As enumRequirementsL ookups
= eRegsLookup_ReqTypeKey]) AsLong Member
of RegPro40.Project Returns the count of records
returned by a query.

String

01

LogRel ationshipRevisions

Property L ogRelationshipRevisions As Boolean
Member of RegPro40.Project Returns or sets
whether relationships are logged in Revisions

Boolean

01

PermissionsForReqType

Property PermissionsForRegqType(lReqTypeKey As
Long) As enumPermissions read-only Member
of RegPro40.Project Returns the current user's
permissions for editing the requirements of the
regquirement type (data).

String

01

HasParent

Property HasParent([ICount As Long]) As Boolean
read-only Member of RegPro40.Requirement
Returns whether this requirement has a parent

Boolean

01

User GroupKey

Property UserGroupKey AsLong read-only
Member of RegPro40.Project Returns the group of
the current user

String

01

TraceTo

Property TraceTo(vRelLookupValue,
[eRelLookupType As enumRelationshipLookups =
eRelLookup_DerivedKey]) As Relationship read-
only Member of ReqPro40.Requirement Returns
a Relationships object representing all of the objects
to which this requirement traces

String

01

EventRaiseEnabled

Property EventRaiseEnabled As Boolean Member
of ReqPro40.Application Returns or sets whether
the server raises server events

Boolean

01

VersionMajor

Property VersionMajor AsLong read-only

String

01

198

Template Slots

Slot nan e

Documentation

Type

Cardinality |

Member of ReqPro40.Application Returns the
major version number of the application

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean read-
only Member of RegPro40.Project Returns
whether the current user has administrative
permissions

Boolean

01

RelatedRequirement

Property RelatedRequirement(oL ocal Requirement
As Requirement, [eWeight As
enumRequirementsWeights = eReqWeight_Empty])
AsRequirement read-only Member of
ReqPro40.Relationship Returns the Requirement
object that isrelated to the specified requirement

String

01

CurrentPosition

Property CurrentPosition AsLong Member of
ReqPro40.Views Returns or sets the current cursor
position within the collection

Any

01

PermissionsForDocType

Property PermissionsForDocType(IDocTypeKey As
Long) AsenumPermissions read-only Member
of RegPro40.Project Returns the current user's
permissions for editing the Documents of the
Document type (data).

String

01

LockProject

Function LockProject(vProjLookupValue,
[eProjLookuptype As enumProjectL ookups]) As
String Member of RegPro40.Application Locks
a specific open project.

String

01

SourceKey

Property SourceKey AsLong read-only Member
of RegPro40.Relationship Returns the key of the
source Requirement

String

01

ISEOF

Property ISEOF As Boolean read-only Member
of RegPro40.Views Returns whether the end of
the collection has been reached

Boolean

01

AssignParent

Function AssignParent(vRegL ookupValue,

[eRegL ookupType As enumRequirementL ookups =
eRegLookup_Key]) As Requirement Member of
ReqPro40.Requirement Changes the requirement's
parent or setstheit to the root level.

String

01

GetCurrentUsers

Function GetCurrentUsers() As Properties
Member of RegPro40.Project

String

01

HasTracesTo

Property HasTracesTo([ICount As Long]) As
Boolean read-only Member of
RegPro40.Requirement Returns whether this
requirement has any traces to other requirements.
Optionally returns the number of these traces.

Boolean

01

WeightName

Property WeightName As String read-only
Member of ReqPro40.Requirement Returnsa
string representation of the weight of this object

String

01

199

Template Slots

Slot nan e

Documentation

Type

Cardinality |

RefreshSecurity

Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves current security
information from the database

String

01

DestinationRequirement

Property DestinationRequirement([eWeight As
enumRequirementsWeights = eReqWeight_Empty])
AsRequirement read-only Member of
ReqPro40.Relationship Returns the destination
Requirement object

String

01

DeleteRequirementHierarchy

Sub DeleteRequirementHierarchy([eDeleteFlag As
enumRequirementDeleteFlags =
eRegDelFlag_Empty], [vNewParentL ookupValue],
[vNewParentL ookupType As

enumRequirementL ookups = eReqL ookup_Key])
Member of RegPro40.Requirement Deletes a
requirement from the project and provides options
for dealing with hierarchical children.

String

01

SecurityEnabled

Property SecurityEnabled AsBoolean Member of
ReqPro40.Project Returns or sets whether security
is enabled for the project

Boolean

01

XMLVersion

Property XMLVersion As Long
Member of RegPro40.Project

read-only

String

01

DestinationRequirementinfo

Property

DestinationRequirement! nfo(eRequirementInfoType
As enumObjectinfoTypes) read-only Member of
RegPro40.Relationship Returns basic destination
Reguirement info viadirect SQL. Avoids loading

the Requirement object.

String

01

Count

Property Count AsLong read-only Member of
ReqPro40.Views Returns the number of View
objects in the collection

Any

01

IsRoot

Property IsRoot AsBoolean read-only Member
of RegPro40.Requirement Returns whether this
reguirement is a root requirement

Boolean

01

IsInKeyset

Property IsinKeyset(IKey AsLong) As Boolean
read-only Member of ReqPro40.Views Returns
whether the specified key isin the collection

Boolean

01

TraceFrom

Property TraceFrom(vRelLookupValue,
[eRelLookupType As enumRel ationshipL ookups =
eRelLookup_DerivedKey]) As Relationship read-
only Member of ReqPro40.Requirement Returns
the Relationship object for the specified traced from
object

String

01

MoveNext

Sub MoveNext() Member of RegPro40.Views
Set the current position in the collection to the next
item

Any

01

200

Template Slots

Slot nan e

Documentation

Type

Cardinality |

IsModified

Property IsModified As Boolean read-only
Member of RegPro40.Views Returns whether any
of the Views in the collection have been modified

Boolean

01

Text

Property Text As String Member of
ReqPro40.Requirement Returns or sets the textual
definition for this requirement

String

01

UserKey

Property UserKey AsLong read-only Member
of RegPro40.Project Returns the key of the current
user

String

01

PermissionsFor ReqName

Property PermissionsForRegName(IRegTypeKey
As Long) As enumPermissions read-only
Member of RegqPro40.Project

String

01

TracesTo

Property TracesTo As Relationships read-only
Member of ReqPro40.Requirement Returns a
Relationship object for the specified traces to object

String

01

SourceProjectGUID

Property SourceProjectGUID As String read-only
Member of ReqPro40.Relationship Returns the
Project GUID of the source Requirement.

String

01

NextVersionNumber

Property NextVersionNumber As String read-only
Member of ReqPro40.Requirement Returns the
next sequential version number for this requirement

String

01

IsinDB

Property IsinDB(IKey As Long, elnterfacelD As
enumlnterfacel dentifiers, [sVersionNumber As
String]) AsBoolean read-only Member of
RegPro40.Project Returns whether the specified
object isin the database

Boolean

01

DocPosition

Property DocPosition AsLong read-only
Member of RegPro40.Requirement Returns the
position of the requirement within the document.

String

01

|sOpenedExclusive

Property IsOpenedExclusive As Boolean read
only Member of RegPro40.Project Returns
whether the current user has opened the project
exclusively

Boolean

01

DropObjects

Sub DropObjects(elnterfacel D As
enumlinterfaceldentifiers) Member of
ReqPro40.Project Removes collections from the
Project object

String

01

RelatedRequirementInfo

Property

RelatedRequirementInfo(oL ocal Requirement As
Requirement, eRequirementinfoType As
enumObjectinfoTypes) read-only Member of
ReqPro40.Relationship Returns basic related
Requirement info via direct SQL. Avoids loading
the Requirement object.

String

01

SuspectDateTime

Propertv SuspbectDateTime As Strina read-onlv

String

01

201

Template Slots

Slot nan e

Documentation

Type

Cardinality |

Member of RegPro40.Requirement

DBSate

Property DBState As String read-only Member
of ReqPro40.Requirement Returns the state of the
object in the underlying datasource.

String

01

1sOpenedReadOnly

Property |sOpenedReadOnly As Boolean read-
only Member of RegPro40.Project Returns
whether the current user has opend the project read
only

Boolean

01

MovePrevious

Sub MovePrevious() Member of ReqPro40.Views
Set the current position in the collection to the
previous item

Any

01

ProjectLockCount

Property ProjectL ockCount(vProjLookupV alue,
[eProjL ookuptype As enumProjectL ookups]) As
Long readonly Member of
RegPro40.Application Returns the number of
ouststanding locks on a project object.

String

01

Movel ast

Sub MovelLast() Member of ReqPro40.Views
Sets the current position in the collection to the last
item

Any

01

VersionMinor

Property VersionMinor AsLong read-only
Member of ReqPro40.Application Returnsthe
minor version number of the application

String

01

DestinationProjectGUID

Property DestinationProjectGUID As String read-
only Member of RegPro40.Relationship Returns
the Project GUID of the destination Requirement.

String

01

DerivedKey

Property DerivedKey As String read-only
Member of ReqPro40.Relationship Returnsa
unique key composed of the DestProjGUID +
DestRegKey + SourceProjGUID + SourceRegKey.

String

01

ValidPackage

Function ValidPackage (IKey AsLong) As
Boolean Member of RegPro40.Project

Boolean

01

|sPermittedFor

Property IsPermittedFor(ePermission As
enumPermissions, ePermissionFor As
enumPermissionTypes) As Boolean read-only
Member of ReqPro40.Requirement Returns
whether the specified permissions are permitted for
the specified permission type for the currently
logged in user. The ReqType, ReqTraceability and
ReqText permission types are valid typesfor this
interface

Boolean

01

PWD

Property PWD As String Member of
ReqgPro40.Application Sets a default password

String

01

ISBOF

Property ISBOF AsBoolean read-only Member
of ReqPro40.Views Returns whether the current
position represents the beginning of

Any

01

202

Template Slots

Slot nan e

Documentation

Type

Cardinality |

PermissionsFor

Property PermissionsFor(ePermissionFor As
enumPermissionTypes) As enumPermissions
read-only Member of ReqPro40.Requirement
Returns the permissions for the currently logged in
user for the permission type specified. The
ReqType, ReqTraceability and RegText permission
types are valid types for thisinterface.

String

01

PermissionsForAttr

Property PermissionsForAttr(IReqTypeKey As
Long, IAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project Returns
the current user's permissions for editing the
AttrValues of the Attr type (data).

String

01

TracesFrom

Property TracesFrom As Relationships read-only
Member of RegPro40.Requirement Returns a
Relationships object representing all of the objects
from which this requirement traces

String

01

MoveFirst

Sub MoveFirst() Member of RegPro40.Views
Sets the current position in the collection to the first
item

Any

01

StateName

Property StateName As String read-only
Member of RegPro40.Relationship Returns the
textual representation of the state of this
Relationship

String

01

GetDiscussionltem

Function GetDiscussionltem(IKey AsLong) As
Object Member of ReqPro40.Project Returns the
specified discussion or response

String

01

Add

Function Add(sName As String, eViewType As
enumViewTypes, sPrimaryQueryString As String,
ePrimaryQueryStringFormat As
enumQueryFormats, [sSecondaryQueryString As
String], [eSecondaryQueryStringFormat As
enumQueryFormats], [sPropertyString As String],
[sDescription As String], [sV ersionReason As
String], [eViewVisibility As enumViewVisibility =
1]) AsView Member of RegPro40.Views Adds
the specified view to the collection

String

01

VersionRev

Property VersionRev AsLong read-only
Member of ReqPro40.Application Returns the
version revision number

String

01

GetDiscussions

Function GetDiscussions() As Discussions
Member of ReqPro40.Requirement Returns the
Discussions object associated with this requirement

String

01

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oOervDef As Ohiectl) Memher of

String

01

203

Template Slots

Slot nan e

Documentation

Type

Cardinality |

ReqPro40.Project Executes the specified query

Display

Function Display(eDisplayMode As
enumDisplayModes, eDisplayType As
enumDisplayTypes) As Object Member of
RegPro40.Requirement This method will display a
requirement dialog of the mode and type received.

String

01

Children

Property Children As Relationships read-only
Member of RegPro40.Requirement Returns a
collection of Relationship objects representing the
children of this requirement

String

01

CloseServer

Sub CloseServer() Member of
ReqPro40.Application Reserved

Any

01

Item

Property Item(vViewLookupValue,

[eViewL ookupType As enumViewL ookups =
eViewLookup_Key]) AsView read-only
Default member of RegPro40.Views Returnsthe
specified View

Any

01

GetRequirement

Function GetRequirement(vRegL ookupValue,
[eReqL ookupType As enumRequirementL ookups =
eReqgLookup_Key], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags]) As Requirement

Member of ReqPro40.Project Returns the object
for the specified requirement

String

01

DirectionName

Property DirectionName As String read-only
Member of RegPro40.Relationships Returns the
name of the direction of the relationship objects held
by this collection (tracesto, tracesfrom, child, or
parent)

String

01

Changel.oggedinUser

Function ChangelL oggedInUser(vValue,
[eUserLookup As enumUserL ookups =
eUserLookups_Key], [vValue2]) As Boolean
Member of ReqPro40.Project Changes the user
logged into the project.

Boolean

01

IsNew

Property IsNew As Boolean
of RegPro40.Requirement
reguirement is not new.

read-only Member
Indicates if the

Boolean

01

Suspect

Property Suspect AsBoolean Member of
ReqPro40.Relationships Sets all Relationship
objects in the collection to suspect

Boolean

01

|sServer Open

Property IsServerOpen As Boolean read-only
Member of ReqPro40.Application Determines
whether the server is running

Boolean

01

NewRegProCollection

Property NewReqgProCollection As

String

01

204

Template Slots

Slot nan e

Documentation

Type

Cardinality |

RegProCollection read-only Member of
ReqPro40.Project Returns anew
ReqgProCollection object.

PermissionsFor RegTraceability

Property
PermissionsForReqTraceability(IReqTypeKey As
Long) As enumPermissions read-only Member
of RegPro40.Project Returns the current user's
permissions for editing the t raceability of
requirements of the requirement type (data).

String

01

RelationshipTypeName

Property RelationshipTypeName As String read-
only Member of ReqPro40.Relationships
Returns the name of the Relationship objectsin this

collection

String

01

DestinationKey

Property DestinationKey AsLong read-only
Member of ReqPro40.Relationship Returns the
key of the destination Requirement

String

01

SourceRequirementinfo

Property
SourceRequirementInfo(eRequirementInfoType As
enumObjectinfoTypes) read-only Member of
ReqPro40.Relationship Returns basic source
Reguirement info viadirect SQL. Avoids loading
the Requirement object.

String

01

DestinationRelKey

Property DestinationRelKey AsLong read-only
Member of RegPro40.Relationship Returnsthe
key of the relationship in the project of the
destination Requirement.

String

01

Refresh

Sub Refresh() Member of RegPro40.View

Any

01

Bookmark

Property Bookmark As String read-only
Member of RegPro40.Requirement Returns the
bookmark associated with this requirement (if any)

String

01

PermissionsForListltemType

Property
PermissionsForListitemType(IReqTypeKey As
Long, IAttrKey As Long, IListltemKey As Long)
As enumPermissions read-only Member of
ReqPro40.Project Returns the current user's
permissions for editing the ListitemValue of the
Listltem type (data).

String

01

GetCurrentRelationship

Function GetCurrentRelationship() As Relationship
Member of RegPro40.Relationships Returns the
Relationship object at the current cursor position

String

01

AreProjectsLocked

Property AreProjectsLocked As Boolean read-

only Member of ReqPro40.Application

Boolean

01

Save

Sub Save() Member of ReqPro40.Views Save
all Views that have changed to the database

Any

01

DBProperties

Property DBProperties As Object read-only

String

01

205

Template Slots

Slot nan e

Documentation

Type |Cardinality |

Member of ReqPro40.Project Returns the
properties for the project

GetRequirements

Function GetRequirements(vReqgsL ookupValue,
[eRegsL ookupType As enumRequirementsL ookups
= eRegsL ookup_ReqTypeKey], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumReguirementFlags], [IPageSize As Long =
1000], [IPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returns the
requirements in the project

String 0:1

IsDocBased

Property IsDocBased As Boolean read-only
Member of ReqPro40.Requirement Returns
whether this requirement lives in a document

Boolean |0:1

IsProjectLocked

Property |sProjectL ocked(vProjL ookupValue,
[eProjL ookuptype As enumProjectL ookups]) As
Boolean read-only Member of
ReqPro40.Application Determinesif a specific
project has any outstanding locks.

Boolean |0:1

CLASSDOCUMENTS

TemplateSlots

Slot nan e

Documentation Type | Cardinality

Changel oggedInUser

Function Changel oggedinUser(vValue,
[eUserL ookup As enumUserL ookups =

eUserLookups_Key], [vValue2]) As Boolean Boolean |0:1

Member of RegPro40.Project Changes the
user logged into the project.

Revert

Sub Revert([bRevertAll As Boolean = False])

Member of ReqPro40.Views Restores objects | Boolean |0:1

to their state when originally created

MovePrevious

Sub MovePrevious() Member of
ReqPro40.Views Set the current position in Any
the collection to the previousitem

01

VersionMajor

Property VersionMajor AsLong read-only

Member of ReqPro40.Application Returns String [0:1

the major version number of the application

GetRequirementsCount

Function
GetRequirementsCount(vReqgsL ookupValue,
[eReqgsLookupType As

enumRequirements. ookups = String [0:1

eReqsL ookup_ReqTypeKey]) AsLong
Member of ReqPro40.Project Returns the
count of records returned by a query.

PermissionsForDocType

Property
PermissionsForDocType(IDocTypeKey As

String [0:1

206

Template Slots

Slot nan e

Documentation

Type

Cardinality

Long) As enumPermissions read-only
Member of ReqPro40.Project Returnsthe
current user's permissions for editing the
Documents of the Document type (data).

CurrentKey

Property CurrentkKey AsLong read-only
Member of RegPro40.Views Returns the key
of the Requirement pointed to by
CurrentPosition()

Any

0.1

EventRai seEnabled

Property EventRaiseEnabled As Boolean
Member of ReqPro40.Application Returns or
sets whether the server raises server events

Boolean

0:1

Save

Sub Save() Member of ReqPro40.Views
Save al Views that have changed to the
database

Any

01

Personal Catal ogltem

Property

Personal Catal ogltem(vCatL ookupValue,
[eCatL ookupType As enumCatal ogL ookups =
eCatlL ookup_Name]) As Catalogltem read-
only Member of RegPro40.Application
Returns the specified catalog item from the
Local catalog collection

String

01

DropObjects

Sub DropObjects(elnterfacelD As
enuminterfaceldentifiers) Member of
ReqPro40.Project Removes collections from
the Project object

String

01

Count

Property Count AsLong read-only Member
of ReqPro40.Views Returns the number of
View objectsin the collection

Any

0.1

UserKey

Property UserKey As Long
Member of ReqPro40.Project
of the current user

read-only
Returns the key

String

0:1

LockProject

Function LockProject(vProjLookupValue,
[eProjL ookuptype As enumProjectL ookups])
As String Member of RegPro40.Application
L ocks a specific open project.

String

01

Action

Event Action(eEventType As
enumEventTypes, eObjectType As
enumlnterfacel dentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
Member of RegPro40.Application

Any

0.1

RefreshSecurity

Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves cur rent security
information from the database

String

0.1

207

Template Slots

Slot nan e

Documentation

Type

Cardinality

SetExclusiveAccess

Property SetExclusiveAccess As Boolean
Member of RegPro40.Project

Boolean

0.1

VersionRev

Property VersionRev AsLong read-only
Member of ReqPro40.Application Returns
the version revision number

String

0.1

GetCurrentProjectUsers

Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqgPro40.Application

String

0.1

GetCurrentDocument

Function GetCurrentDocument() As Document
Member of RegPro40.Documents Returns the
Document object at the current position in the
collection

String

01

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionVal ue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties
Member of ReqPro40.Application Opensa
RequisitePro project and returns its properties

String

0.1

Item

Property Item(vViewLookupValue,

[eViewL ookupType As enumViewL ookups =
eViewLookup_Key]) AsView read-only
Default member of RegPro40.Views Returns
the specified View

Any

0.1

CompareVersionNumber

Function CompareV ersionNumber(sNumberl
As String, sNumber2 As String) Member of
ReqPro40.Application Compares version
numbers

String

0.1

AreProjectsLocked

Property AreProjects. ocked As Boolean
read-only Member of ReqPro40.Application

Boolean

0.1

QueryValidate

Function QueryValidate(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) AsLong Member of
ReqPro40.Project Checks the specified query
for correct syntax

String

01

Add

Function Add(sName As String, eViewType As
enumViewTypes, sPrimaryQueryString As
String, ePrimaryQueryStringFormat As
enumQueryFormats, [sSecondaryQueryString
As String], [eSecondaryQueryStringFormat As
enumQueryFormats], [sPropertyString As
String], [sDescription As String],
[sVersionReason As String], [eViewVisibility
AsenumViewVisibility = 1]) As View

Member of ReaPro40.Views Addsthe

String

01

208

Template Slots

Slot nan e

Documentation

Type

Cardinality

specified view to the collection

ProjectLockCount

Property

ProjectL ockCount(vProjLookupValue,
[eProjLookuptype As enumProjectL ookups])
AslLong read-only Member of
RegPro40.Application Returns the number of
ouststanding locks on a project object.

String

0.1

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vRegTypeL ookupValue,
[eReqTypeL ookupType As

enumReqTypesL ookups =
eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentRegL ookupValue],

[eParentRegL ookupType As
enumRequirementL ookups =

eReqL ookup_Empty]) As Requirement
Member of RegPro40.Project

String

01

IsValidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) As Boolean read-only
Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid
lock.

String

01

PermissionsForAttr

Property PermissionsForAttr(IReqTypeKey As
Long, IAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project
Returns the current user's permissions for
editing the AttrValues of the Attr type (data).

String

0.1

CurrentPosition

Property CurrentPosition AsLong Member of
RegPro40.Views Returns or sets the current
cursor position within the collection

Any

0:1

1sOpenedReadOnly

Property 1sOpenedReadOnly As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has opend the
project read only

Boolean

01

PermissionsForListltemType

Property
PermissionsForListitemType(IReqTypeKey As
Long, IAttrKey AsLong, IListltemKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returnsthe
current user's permissions for editing the
ListitemV alue of the Listltem type (data).

String

0.1

CloseServer

Sub CloseServer() Member of
ReqPro40.Application Reserved

Any

01

ValidPackage

Function ValidPackaae (IKev AsLona) As

Boolean

0:1

209

Template Slots

Slot nan e

Documentation

Type

Cardinality

Boolean Member of RegPro40.Project

ISEOF

Property ISEOF AsBoolean read-only
Member of ReqPro40.Views Returns whether
the end of the collection has been reached

Boolean

01

SecurityEnabled

Property SecurityEnabled As Boolean
Member of ReqPro40.Project Returns or sets
whether security is enabled for the project

Boolean

0.1

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has
administrative permissions

Boolean

0.1

ExtendedHelp

Sub ExtendedHel p(sProduct As String,
sSubTool As String, sitem As String,
sOperation As String, sQuery As String)
Member of ReqPro40.Application Launches
Rational Extended Help

String

0.1

IsProjectLocked

Property |sProjectL ocked(vProjL ookupValue,
[eProjL ookuptype As enumProjectL ookups])
AsBoolean read-only Member of
ReqPro40.Application Determinesif a
specific project has any outstanding locks.

Boolean

0.1

AuthorID

Property AuthorID As Long
Member of RegPro40.Project

read-only

String

0:1

VersionDBSchema

read-
Returns

Property VersionDBSchema As Long
only Member of ReqPro40.Project
the database schema version number

String

01

PermissionsForReqType

Property
PermissionsForReqType(IReqTypeKey As
Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
reguirements of the requirement type (data).

String

0.1

PWD

Property PWD As String Member of
ReqPro40.Application Sets a default
password

String

0.1

IsinDB

Property IsinDB(IKey As Long, elnterfacelD
As enuminterfacel dentifiers, [V ersionNumber
As String]) AsBoolean read-only Member
of ReqPro40.Project Returns whether the
specified object is in the database

Boolean

01

DocSaveFormat

Property DocSaveFormat As
enumDocSaveFormat Member of
RegPro40.Project Returns the do cument save
format

String

0:1

GetCurrentUsers

Function GetCurrentUsers() As Properties

String

01

210

Template Slots

Slot nan e

Documentation

Type

Cardinality

Member of RegPro40.Project

Personal Catalog

Property Personal Catalog As Catalog read-
only Member of ReqPro40.Application
Returns the local Catalog object

String

01

IsLocked

Property IsLocked As Boolean read-only
Member of ReqPro40.Project Returns avalue
indicating whether or not the Project is locked.

Boolean

0.1

PermissionsFor RegText

Property
PermissionsForReqText(IReqTypeKey As
Long) AsenumPermissions read-only
Member of RegPro40.Project

String

0.1

GetRootPackage

Function GetRootPackage([bL oadAllPackages
As Boolean = False]) As RootPackage
Member of RegPro40.Project

String

01

Refresh

Sub Refresh() Member of RegPro40.View

Any

01

SequenceKey

Property SequenceKey AsLong read-only
Member of ReqPro40.Project Returns the
sequence key for the project. The sequence key
is an incrementing number assigned as a project
is opened.

String

0.1

GetRequirements

Function

GetReguirements(vRegsL ookupV alue,
[eRegsLookupType As

enumRequirementsL ookups =

eReqsL ookup_ReqTypeKey], [eWeight As
enumRequirementsWeights =
eReqWeight_Medium], [eFlags As
enumRequirementFlags], [IPageSize As Long =
1000], [IPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returnsthe
requirementsin the project

String

0.1

DBProperties

Property DBProperties As Object read-only
Member of ReqPro40.Project Returns the
properties for the project

String

01

LogRelationshipRevisions

Property L ogRelationshipRevisions As Boolean
Member of ReqPro40.Project Returns or sets
whether relationships are logged in Revisions

Boolean

0.1

GetRequirement

Function GetRequirement(vRegL ookupV alue,
[eRegLookupType As

enumRequirementL ookups =
eRegLookup_Key], [eWeight As
enumRegquirementsWeights =
eRegWeight_Medium], [eFlags As
enumRequirementFlags]) As Requirement
Member of ReqPro40.Project Returns the
object for the specified requirement

String

0.1

211

Template Slots

Slot nan e

Documentation

Type

Cardinality

1sServerOpen

Property IsServerOpen As Boolean
Member of ReqPro40.Application
Determines whether the server isrunning

read-only

Boolean

0.1

VersionMinor

Property VersionMinor AsLong read-only
Member of ReqPro40.Application Returns
the minor version number of the application

String

0:1

MoveFirst

Sub MoveFirst() Member of RegPro40.Views
Sets the current position in the collection to the
first item

Any

01

User GroupKey

Property UserGroupKey AsLong read-only
Member of RegPro40.Project Returnsthe
group of the current user

String

0.1

ISBOF

Property IsSBOF As Boolean read-only
Member of ReqPro40.Views Returns whether
the current position represents the beginning of

Any

0.1

RQSFilepath

Property RQSFilepath As String
Member of RegPro40.Project
pathname of the .rgsfile

read-only
Returns the

String

0:1

IsProjectOpen

Property IsProjectOpen As Boolean read-only
Member of RegPro40.Project Returns
whether the current user has the project open

Boolean

01

LockCount

Property LockCount AsLong read-only
Member of ReqPro40.Project Returns the
number of outstanding locks against the
Project.

String

0.1

oCustomTypes

Property CustomTypes As CustomTypes
read-only Member of RegPro40.Application
Reserved for future use.

String

0:1

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enumlnterfaceldentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqgPro40.Application

String

0:1

GetDiscussionltem

Function GetDiscussionltem(IKey AsLong) As
Object Member of ReqPro40.Project
Returns the specified discussion or response

String

0:1

PermissionsFor ReqName

Property

PermissionsForRegName(IReqT ypeKey As
Long) As enumPermissions read-only
Member of RegPro40.Project

String

01

IsInKeyset

Property IslnKeyset(IKey AsLong) As
Boolean read-only Member of
ReaPro40.Views Returns whether the

Boolean

0.1

212

Template Slots

Slot nan e

Documentation

Type

Cardinality

specified key isin the collection

AutoSuspect

Property AutoSuspect As Boolean Member of
RegPro40.Project Returns or sets whether
requirements are auto suspect

Boolean

01

IsModified

Property IsModified As Boolean read-only
Member of RegPro40.Views Returns whether
any of the Viewsin the collection have been
modified

Boolean

0.1

DocNameExists

Function DocNameEXxists(sName As String) As
Boolean Member of RegPro40.Documents

String

0.1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes alock from a
specific project.

String

01

PermissionsForReqTraceability

Property
PermissionsForRegTraceability(IReqTypeK ey
As Long) AsenumPermissions read-only
Member of RegPro40.Project Returnsthe
current user's permissions for editing the
traceability of requirements of the requirement
type (data).

String

0.1

|sOpenedExclusive

Property |sOpenedExclusive As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has opened the
project exclusively

Boolean

0.1

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) Member of
ReqPro40.Project Executes the specified

query

String

0.1

XMLVersion

Property XMLVersion AsLong read-only
Member of RegPro40.Project

String

01

GetPackage

Function GetPackage(IKey As Long, [eWeight
As enumPackageWeights =
ePackageWeight_Empty]) As Package
Member of RegPro40.Project

String

0.1

Command

Function Command([vOne], [vTwo], [vThree])
Member of ReqPro40.Project Generic
Interface for providing additional functionality.

String

0:1

NewReqgProCollection

Property NewReqgProCollection As
RegProCollection read-only Member of
ReqPro40.Project Returns a new
ReqgProCollection object.

String

01

213

Template Slots

Slot nan e

Documentation

Type

Cardinality

MoveNext

Sub MoveNext() Member of
ReqPro40.Views Set the current position in
the collection to the next item

Any

0.1

Version

Property Version As String read-only
Member of ReqPro40.Application Returns
the version of the application

String

0:1

ItemCurrent

Property ItemCurrent As Document read-only
Member of RegPro40.Views Returnsthe
Document associated with the current item

Any

01

Movel ast

Sub Movelast() Member of RegPro40.Views
Sets the current position in the collection to the
last item

Any

0.1

CLASSDOCUMENT

Template Slots

Slot nan e

Documentation

Type

Cardinality

FileFlags

Property FileFlags As String read-only
Member of RegPro40.Document Returns the
file system flags

String

0.1

VersionDBSchema

Property VersionDBSchema AsLong read-
only Member of RegPro40.Project Returns
the database schema version number

String

0.1

CompareVer sionNumber

Function CompareV ersionNumber(sNumberl As
String, sSNumber2 As String) Member of
RegPro40.Application Compares version
numbers

String

01

ProjectLockCount

Property ProjectL ockCount(vProjLookupValue,
[eProjLookuptype As enumProjectL ookups]) As
Long readonly Member of
RegPro40.Application Returns the number of
ouststanding locks on a project object.

String

0:1

ISBOF

Property ISBOF As Boolean read-only
Member of ReqPro40.Views Returns whether
the current position represents the beginning of

Any

0.1

RefreshSecurity

Sub RefreshSecurity() Member of
ReqPro40.Project Retrieves current security
information from the database

String

0.1

oCustomTypes

Property CustomTypes As CustomTypes read-
only Member of ReqPro40.Application
Reserved for future use.

String

0:1

ISEOF

Property ISEOF AsBoolean read-only
Member of RegPro40.Views Returns whether
the end of the collection has been reached

Boolean

01

UserKey

Propertv UserKev AsLona read-onlv

String

01

214

Template Slots

Slot nan e

Documentation

Type

Cardinality

Member of RegPro40.Project
of the current user

Returns the key

CurrentPosition

Property CurrentPosition AsLong Member of
ReqPro40.Views Returns or sets the current
cursor position within the collection

Any

0.1

ChangelLoggedInUser

Function Changel oggedinUser(vValue,

[eUserL ookup As enumUserL ookups =
eUserLookups_Key], [vValue2]) As Boolean
Member of ReqPro40.Project Changes the user
logged into the project.

Boolean

01

VersionMinor

Property VersionMinor AsLong read-only
Member of ReqPro40.Application Returnsthe
minor version number of the application

String

0.1

IsinDB

Property IsinDB(IKey As Long, elnterfacelD As
enuminterfacel dentifiers, [sVersionNumber As
String]) AsBoolean read-only Member of
ReqPro40.Project Returns whether the
specified object is in the database

Boolean

0.1

RQSFilepath

Property RQSFilepath As String
Member of RegPro40.Project
pathname of the .rgsfile

read-only
Returns the

String

0:1

GetCurrentProjectUsers

Function GetCurrentProjectUsers(sRQSPath As
String) As Properties Member of
ReqPro40.Application

String

01

Personal Catalog

Property Personal Catalog As Catalog read-only
Member of ReqPro40.Application Returnsthe
local Catalog object

String

0.1

OpenProjectProperties

unction
OpenProjectProperties(vOpenProjOptionVal ue,
[eOpenProjOptionType As
enumOpenProjectOptions =
eOpenProjOpt_RQSFile]) As Properties
Member of RegPro40.Application Opensa
RequisitePro project and returns its properties

String

0.1

DropObjects

Sub DropObjects(elnterfacel D As
enumlnterfaceldentifiers) Member of
ReqPro40.Project Removes collections from
the Project object

String

0.1

Item

Property Item(vViewLookupValue,

[eViewL ookupType As enumViewL ookups =
eViewLookup_Key]) AsView read-only
Default member of ReqPro40.Views Returns
the specified View

Any

01

1sOpenedReadOnly

Property |sOpenedReadOnly As Boolean read-
only Member of RegPro40.Project Returns

Boolean

0.1

215

Template Slots

Slot nan e

Documentation

Type

Cardinality

whether the current user has opend the project
read only

PermissionsForReqType

Property PermissionsForReqType(IReqTypeK ey
AsLong) AsenumPermissions read-only
Member of ReqPro40.Project Returnsthe
current user's permissions for editing the
reguirements of the requirement type (data).

String

0:1

Count

Property Count AsLong read-only Member
of ReqPro40.Views Returns the number of
View objects in the collection

Any

0.1

PermissionsForDocType

Property PermissionsForDocType(IDocTypeKey
AsLong) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
Documents of the Document type (data).

String

01

PermissionsForReqName

Property
PermissionsForRegName(IReqTypeKey As
Long) AsenumPermissions read-only
Member of RegPro40.Project

String

0:1

DocNameEXxists

Function DocNameEXxists(sName As String) As
Boolean Member of RegPro40.Documents

String

01

Command

Function Command([vOne], [vTwo], [vThree])
Member of ReqPro40.Project Generic Interface
for providing additional functionality.

String

01

ExtendedHelp

Sub ExtendedHelp(sProduct As String, sSubTool
As String, sltem As String, sOperation As String,
sQuery As String) Member of
RegPro40.Application Launches Rational
Extended Help

String

0.1

IsProjectLocked

Property IsProjectL ocked(vProjL ookupValue,
[eProjLookuptype As enumProjectLookups]) As
Boolean read-only Member of
ReqPro40.Application Determinesif a specific
project has any outstanding locks.

Boolean

0.1

CreateRequirement

Function CreateRequirement(sName As String,
sText As String, vRegTypeL ookupValue,
[eReqTypeLookupType As

enumReqTypesL ookups =
eReqTypesLookups_Key], [sVersionLabel As
String], [sVersionReason As String],
[vParentRegL cokupValue],

[eParentRegL ookupType As
enumRequirementL ookups =
eRegLookup_Empty]) As Requirement
Member of RegPro40.Project

String

0:1

AuthorID

Prooertv AuthorID AsLona read-onlv

String

01

216

Template Slots

Slot nan e

Documentation

Type

Cardinality

Member of RegPro40.Project

GetCurrentUsers

Function GetCurrentUsers() As Properties
Member of RegPro40.Project

String

0:1

|sServer Open

Property IsServerOpen AsBoolean read-only
Member of ReqPro40.Application Determines
whether the server is running

Boolean

01

PermissionsFor RegText

Property PermissionsForReqText(IReqTypeKey
As Long) As enumPermissions read-only
Member of RegPro40.Project

String

01

GetDiscussionltem

Function GetDiscussionltem(IKey As Long) As
Object Member of ReqPro40.Project Returns
the specified discussion or response

String

0.1

Name_

Property Name_ As String Member of
RegPro40.Document

String

0.1

|sOpenedExclusive

Property IsOpenedExclusive As Boolean read-
only Member of RegPro40.Project Returns
whether the current user has opened the project
exclusively

Boolean

0.1

UnlockProject

Sub UnlockProject(sGUID As String,
vProjLookupValue, [eProjLookuptype As
enumProjectLookups]) Member of
ReqPro40.Application Removes alock from a
specific project.

String

0.1

DocSaveFormat

Property DocSaveFormat As
enumDocSaveFormat Member of
ReqPro40.Project Returns the document save
format

String

01

Add

Function Add(sName As String, eViewType As
enumViewTypes, sPrimaryQueryString As
String, ePrimaryQueryStringFormat As
enumQueryFormats, [sSecondaryQueryString As
Sring], [eSecondaryQueryStringFormat As
enumQueryFormats], [sPropertyString As
String], [sDescription As String],
[sVersionReason As String], [eViewVisibility As
enumViewVisibility = 1]) AsView Member of
ReqPro40.Views Adds the specified view to
the collection

String

01

Version

Property Version As String read-only
Member of ReqPro40.Application Returnsthe
version of the application

String

0:1

FileExtension

Property FileExtension As String read-only
Member of ReqPro40.Document Returns the
file extension for the document

String

01

Movel ast

Sub Movel ast() Member of RegPro40.Views

Any

01

217

Template Slots

Slot nan e

Documentation

Type

Cardinality

Sets the current position in the collection to the
last item

VersionMajor

Property VersionMajor AsLong read-only
Member of RegPro40.Application Returnsthe
major version number of the application

String

0.1

IsLocked

Property IsLocked As Boolean read-only
Member of ReqPro40.Project Returns avalue
indicating whether or not the Project is locked.

Boolean

0.1

User GroupKey

Property UserGroupKey AsLong read-only
Member of ReqPro40.Project Returns the
group of the current user

String

01

NewReqgProCollection

Property NewReqgProCollection As
RegProCollection read-only Member of
ReqPro40.Project Returns anew
ReqgProCollection object.

String

0.1

FileDateTime

Property FileDateTime As String
Member of RegPro40.Document
file system modification time

read-only
Returns the

String

0:1

IsProjectOpen

Property IsProjectOpen As Boolean read-only
Member of RegPro40.Project Returns whether
the current user has the project open

Boolean

01

Personal Catalogltem

Property

Personal Catal ogltem(vCatL ookupValue,
[eCatL ookupType As enumCatal ogL ookups =
eCatlL ookup_Name]) As Catalogltem read-
only Member of ReqPro40.Application
Returns the specified catalog item from the
Local catalog collection

String

01

QueryValidate

Function QueryValidate(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) AsLong Member of
ReqPro40.Project Checks the specified query
for correct syntax

String

0.1

Refresh

Sub Refresh() Member of RegPro40.View

Any

01

CurrentKey

Property CurrentKey AsLong read-only
Member of RegPro40.Views Returns the key
of the Requirement pointed to by
CurrentPosition()

Any

01

AutoSuspect

Property AutoSuspect As Boolean Member of
ReqPro40.Project Returns or sets whether
requirements are auto suspect

Boolean

0.1

SequenceKey

Property SequenceKey AsLong read-only
Member of ReqPro40.Project Returnsthe
seguence key for the project. The sequence key

String

0.1

218

Template Slots

Slot nan e

Documentation

Type

Cardinality

is an incrementing number assigned as a project
is opened.

PermissionsForAttr

Property PermissionsForAttr(IReqTypeKey As
Long, IAttrKey As Long) As enumPermissions
read-only Member of ReqPro40.Project
Returns the current user's permissions for editing
the AttrValues of the Attr type (data).

String

0:1

SecurityEnabled

Property SecurityEnabled As Boolean Member
of RegPro40.Project Returns or sets whether
security is enabled for the project

Boolean

0.1

ItemCurrent

Property ItemCurrent As Document read-only
Member of ReqPro40.Views Returnsthe
Document associated with the current item

Any

0.1

IslnKeyset

Property IsinKeyset(IKey AsLong) As Boolean
read-only Member of RegPro40.Views
Returns whether the specified key isin the
collection

Boolean

01

GetRequirement

Function GetRequirement(vRegL ookupValue,
[eRegLookupType As
enumRequirementL ookups =
eRegLookup_Key], [eWeight As
enumRequirementsWeights =
eRegWeight_Medium], [eFlags As
enumRequirementFlags]) As Requirement
Member of ReqPro40.Project Returns the
object for the specified requirement

String

0.1

LockProject

Function L ockProject(vProjLookupValue,

[eProjL ookuptype As enumProjectL ookups]) As
String Member of ReqPro40.Application

L ocks a specific open project.

String

01

EventRaiseEnabled

Property EventRaiseEnabled As Boolean
Member of RegPro40.Application Returns or
sets whether the server raises server events

Boolean

0.1

Full OfflinePath

Property FullOfflinePath As String read-only
Member of RegPro40.Document Returns the
full path of the offline document

String

0.1

SetExclusiveAccess

Property SetExclusiveAccess As Boolean
Member of RegPro40.Project

Boolean

0.1

ValidPackage

Function ValidPackage (IKey AsLong) As
Boolean Member of RegPro40.Project

Boolean

0.1

PermissionsForListltemType

Property
PermissionsForListitemType(lReqTypeKey As
Long, IAttrKey As Long, IListltemKey As Long)
AsenumPermissions read-only Member of
ReqPro40.Project Returnsthe current user's

String

01

219

Template Slots

Slot nan e

Documentation

Type

Cardinality

permissions for editing the ListitemValue of the
Listltem type (data).

GetRootPackage

Function GetRo otPackage([bL oadAllPackages
As Boolean = False]) As RootPackage Member
of RegPro40.Project

String

0.1

IsModified

Property IsModified As Boolean read-only
Member of ReqPro40.Views Returns whether
any of the Views in the collection have been
modified

Boolean

0:1

GetRequirementsCount

Function

GetRequirementsCount(vReqgsL ookupValue,
[eRegsLookupType As

enumRequirementsL ookups =
eReqsLookup_ReqTypeKey]) AsLong
Member of ReqPro40.Project Returns the
count of records returned by a query.

Sring

01

MoveNext

Sub MoveNext() Member of ReqPro40.Views
Set the current position in the collection to the
next item

Any

01

Revert

Sub Revert([bRevertAll As Boolean = False])
Member of ReqPro40.Views Restores objects
to their state when originally created

Boolean

01

LogRelationshipRevisions

Property L ogRelationshipRevisions As Boolean
Member of ReqPro40.Project Returns or sets
whether relationships are logged in Revisions

Boolean

0.1

GetCurrentDocument

Function GetCurrentDocument() As Document
Member of ReqPro40.Documents Returnsthe
Document object at the current position in the
collection

String

0:1

PWD

Property PWD As String Member of
ReqPro40.Application Sets a default password

String

01

ItemLabel

Property ItemLabel AsBoolean Member of
RegPro40.Document

Boolean

01

GetRequirements

Function GetRequirements(vReqsL ookupValue,
[eRegsLookupType As

enumRequirementsL ookups =
eReqsLookup_ReqTypeKey], [eWeight As
enumRegquirementsWeights =
eReqWeight_Medium], [eFlags As
enumReguirementFlags], [IPageSize As Long =
1000], [IPages As Long = 2]) As Requirements
Member of ReqPro40.Project Returnsthe
reguirementsin the project

String

0.1

IsvalidLock

Property IsValidLock(sGUID As String,
vProjLookupValue, [eProjLookuptype As

String

0.1

220

Template Slots

Slot nan e

Documentation

Type

Cardinality

enumProjectL ookups]) As Boolean read-only
Member of ReqPro40.Application Returns
whether the supplied GUID represents a valid
lock.

CloseServer

Sub CloseServer() Member of
ReqPro40.Application Reserved

Any

01

QueryFetch

Function QueryFetch(eQueryBaseType As
enumQueryBaseTypes, eQueryFormat As
enumQueryFormats, sQueryString As String,
[oQueryDef As Object]) Member of
ReqPro40.Project Executes the specified query

String

0.1

VersionRev

Property VersionRev AsLong read-only
Member of ReqPro40.Application Returnsthe
version revision number

String

01

IsCurrentUserAdmin

Property IsCurrentUserAdmin As Boolean
read-only Member of ReqPro40.Project
Returns whether the current user has
administrative permissions

Boolean

0.1

PublishAction

Sub PublishAction(eEventType As
enumEventTypes, eObjectType As
enumlnterfaceldentifiers, sGUID As String,
vEventData, eEventDataType As
enumEventDataTypes, eEventSubType As
enumEventSubTypes) Member of
ReqPro40.Application

String

0.1

XMLVersion

Property XMLVersion AsLong read-only
Member of RegPro40.Project

String

0.1

MovePrevious

Sub MovePrevious() Member of
ReqPro40.Views Set the current position in the
collection to the previous item

Any

0.1

PermissionsForReqTraceability

Property
PermissionsForRegTraceability(IReqTypeK ey
As Long) As enumPermissions read-only
Member of ReqPro40.Project Returns the
current user's permissions for editing the
traceability of requirements of the requirement
type (data).

String

0.1

MoveFirst

Sub MoveFirst() Member of RegPro40.Views
Sets the current position in the collection to the
first item

Any

0.1

Action

Event Action(eEventType As enumEventTypes,
eObjectType As enumlnterfacel dentifiers,
sGUID As String, VEventData, eEventDataType
As enumEventDataTypes, eEventSubType As
enumEventSubTypes, sTimestamp As String)
Member of ReqPro40.Application

Any

01

221

Template Slots

Slot nan e

Documentation

Type

Cardinality

LockCount

Property LockCount AsLong read-only
Member of RegPro40.Project Returnsthe
number of outstanding locks against the Project.

String

0.1

DBProperties

Property DBProperties As Object read-only
Member of ReqPro40.Project Returnsthe
properties for the project

String

0:1

Save

Sub Save() Member of ReqPro40.Views
Save all Views that have changed to the database

Any

0:1

DocTypeKey

Property DocTypeKey AsLong read-only
Member of RegPro40.Document Returns the
key for the document type of the document

String

01

AreProjectsLocked

Property AreProjectsLocked As Boolean read-
only Member of ReqPro40.Application

Boolean

01

GetPackage

Function GetPackage(lKey As Long, [eWeight
As enumPackageWeights =
ePackageWeight_Empty]) As Package
Member of RegPro40.Project

String

01

222

APPENDIX D. CLASSHIERARCHY FOR
SEATOOLS ONTOLOGY PROJECT

Following the same pattern used to present the RequisitePro ontology, in this
appendix we present the SEATools ontology captured in Protégé-2000. We start by
illustrating the class hierarchy tree for the SEAToolsontology. This hierarchy consists of
a selected set of classes (a subset of al SEATools classes) that we judged to be most
useful for establishing our interoperability ontology. Following the hierarchy all of these
classes are then shown in detail. These classes include: DataFlowComponent, Edge,
Vertex, PSDLTime, DatalTypeObj, Datalypes, TypeOp, TimerOp, ExceptionGuard,
OutputGuard, VertexProperties, EdgeProperties, PSDLBuilderConstraints, PSDLBuilder,
Token, CompilePrototype, TrandatePrototype, SchedulePrototype, ExecutePrototype,
CAPSAdaFileList, CAPSMainWindow and CAPSResultList.

223

o SEATooIs
= DataFlowComponent
= Edge
= Vertex
= PSDLTime
= DataTypeObj
= DataTypes
» TypeOp
= TimerOp
= ExceptionGuard
= OutputGuard
= VertexProperties
= EdgeProperties
= PsdiBuilderConstants
= PsdiBuilder
= Token
= CompilerPrototype
= TrandatePrototype
= SchedulePrototype
= ExecutePrototype
= CapsAdaFileList
= CapsMainWindow
= CapsResultList

224

Project: SEATools_Ontology:

Class DataFlowComponent

TemplateSlots

Slot name | Documentat on Type | lardinality |Default
I delete:void | public method String |0:1
' getLabel XOffset:int | public method Integer [0:1
' setid:void | public method String |0:1
' setLabel Offset: void | public method String |0:1
I toString: String | public method String |0:1
' setLabel XOffset:void | public method String |0:1
" setLabelYOffset:void | public method String |0:1
' setLabel:void | public method String |0:1
' setMetxOffset:void | public method String |0:1
' moveTo:void | public method String |0:1
' getMetlFont: Font | public method String |0:1
' setMet:void | public method String |0:1
' getLabel:string | public method String |0:1
' getMetXOffset:int | public method Integer {0:1
' getMetYOffset:int | public method Integer [0:1
' getLabel YOffset:int | public method Integer {0:1
' getY:int| public method Integer [0:1
' getld:int| public method Integer {0:1
' getMet: PSDLTime | public method String |0:1
' setMetYOffset:void | public method String |0:1
' getX:int| public method Integer [0:1
CLASS EDGE
I Template Slots
I Slot name | Documente tion Type Cardinality | Default
' delete:void | public method String 0:1
I getLabel:string | public method String 01
' source.get: Vertex String 0:1
'initiaIControIPointsget:Sring String 0:1
' setMet:void | public method String 0:1
' getY:int| public method Integer |0:1
'initialControIPoints.set:String String 0:1
' points.set: Vector | multiple Floats Float 0:1

225

Template Slots

Slot name | Documente tion Type Cardinality | Default
streamType.get: String String 01
initial Value.get: String String 0:1

setMetXOffset:void | public method String [0:1
getld:int| public method Integer |0:1

setLabel XOffset:void | public method String 0:1
setLabel:void | public method String 0:1
source.set: Vertex String 0:1
getMetYOffset:int | public method Integer |0:1

edgel D.get:int Integer |0:1

toString: String | public method String 0:1
destination.set: String String 0:1
stateStream.set: boolean Boolean |0:1
selectedHandl el ndex.get:int Integer |0:1
stateStream.get: boolean Boolean |0:1
setLabel Offset:void | public method String [0:1
getX:int| public method Integer |0:1
streamType.set: String String 0:1
getMetlFont: Font | public method String 0:1
stateStream: boolean Float 0:1
getMet: PSDLTime| public method String [0:1
setMetYOffset:void | public method String 0:1
destination.get: String String [0:1
initial Value.set: Sring String 0:1
moveTo:void | public method String [0:1

getLabel YOffset:int | public method Integer |0:1
edgel D.set:int Integer |0:1
selectedHandl el ndex.set:int Integer |0:1
getLabel XOffset:int | public method Integer |0:1
getMetXOffset:int | public method Integer |0:1
setLabel YOffset: void | public method String [0:1
points.get: Vector | multiple Floats Float 0:1
setld:void | public method String [0:1

226

CLASSVERTEX

Template Slots

Slot name | Dor:umentation| Type Cardinality | Default
I specRegmts.set: Vector | multiple Floats | Float 0:1
' timingType.set:int Integer | 0:1
' timerList.set: Vector | multiple Floats | Float 0:1
' extractList: String | public String 0:1
' terminator:boolean Boolean |0:1
' getMetlFont: Font | public method | String 0:1
I specRegmts.get: Vector | multiple Floats | Float 01
' exceptionList: String String 0:1
' inEdgesVector.get: vector String 0:1
' timingType.get:int Integer | 0:1
' idExtension.set:int Integer |0:1
' exceptionList.get: String String 0:1
' trigger StreamsList.set: Vector | multiple Floats | Float 0:1
' cloneVertexID.set:int Integer | 0:1
' graphDesc.get: String String 0:1
' getSpecification: String | public String [0:1
' impLanguage.set: String String 0:1
' vertexID:int Integer |0:1
' getLabel YOffset:int | public method |Integer |[0:1
' outEdgesVector .get: Vector String [0:1
' setMetYOffset:void | public method | String | 0:1
' outputGuardList: String String [0:1
' graphDesc: String String 0:1
" defaul tOutputGuards: OutputGuards String [0:1
' finishWithin: PSDL Yime Sting |01
' delete:void | public method | String | 0:1
' getLabel XOffset:int | public method | Integer |[0:1
' getTimerOpList: String | public String [0:1
' trigger Type:int Integer | 0:1
' setMet:void | public method | String | 0:1
' keywordList.get: Vector | multiple Floats | Float 0:1
' setLabel Offset:void | public method | String | 0:1
' timerList.get: Vector | multiple Floats | Float 0:1

227

Template Slots

Slot name | Dor:umentation| Type Cardinality | Default
getExceptionGuardList: Sring | public String 01
keywordList.set: Vector | multiple Floats | Float 0:1
idExtension.get:int Integer |0:1
setld:void | public method | String 0:1
idExtension:int Integer |0:1
genericList.set: String String 0:1
timer Oplist.get: String String 0:1
finishwithin.set: PSDLYime String 0:1
extractOtherPropertiesList: String | public String 0:1
mep.set: PSDLTime String 0:1
period.set:PSDLTime String 0:1
genericList: String String 0:1
exceptionGuar d: ExceptionGuard String 0:1
ifCondition: String String 0:1
trigger Regmts.get: Vector | multiple Floats | Float 0:1
graphDesc.set: String String 0:1
vertex|D.set:int Integer | 0:1
terminator.set: boolean Boolean |0:1
getX:int| public method |Integer |0:1
specRegmts: Vector | multiple Floats | Float 0:1
formal Desc.set: String String 0:1
mrtRegmts.get: Vector | multiple Floats | Float 0:1
PERIODIC:int | public Integer | 0:1
exist:boolean | public Boolean |0:1
terminator.get:boolean Boolean | 0:1
outEdgesVector.set: Vector String [0:1
setMetXOffset:void | public method | String 0:1
inEdgesVector.set: vector String [0:1
exceptionGuardList: String String 0:1
exceptionGuard.get: ExceptionGuard String [0:1
criticalSatus:int Integer | 0:1
outputGuardList.set: String String [0:1
timerOplist: Sring String 0:1
getOtherPropertiesList: Vector | public String |0:1

228

Template Slots

Slot name | Dor:umentation| Type Cardinality | Default
I formalDesc.get: String String 0:1
' defaultOutputGuards.get: OutputGuards String 0:1
I trigger Type.get:int Integer |0:1
' updateOutputGuards:void | public String 0:1
' NON TIME CRITICAL:int | public Integer [0:1
' moveTo:void | public method | String 0:1
' isParent: Boolean Boolean | 0:1
' mrt:PSDLTime String 0:1
I exceptionGuardList.get: String String 0:1
' getld:int| public method |Integer |[0:1
' SPORADIC:int| public Integer |0:1
' outEdgesVector: Vector String 0:1
' finishWithin.get; PSDL Yime Sting |0:1
' BY SOME:int | public Integer | 0:1
I periodRegmts.get: Vector | multiple Floats | Float 0:1
' criticalStatus.set:int Integer | 0:1
I exceptionGuardList.set: Sring String 0:1
' mcpRegmts.get: Vector | multiple Floats | Float 0:1
' finishWithinRegmts.set: Vector | multiple Floats | Float 0:1
' critical Satus.get:int Integer |0:1
' isParen.gett: Boolean Boolean | 0:1
' getMet: PSDLTime| public method | String | 0:1
' ifCondition.get: String String 0:1
' setLabel XOffset:void | public method | String | 0:1
' metRegemts.get: Vector | multiple Floats | Float 0:1
' informal Desc.set: String String [0:1
' informal Desc.get: String String 0:1
' netWorkLabel.set: Sring String [0:1
' INITIAL RADIUS:int | public Integer | 0:1
' mcp: PSDLTime String [0:1
' mrt.set: PSDLTime String 0:1
' period:PSDLTime String [0:1
' informalDesc: String String 0:1
I trigger Type.set:int Integer | 0:1

229

Template Slots

Slot name | Dor:umentation| Type Cardinality | Default
I outputGuardList.get: String String 01
' exceptionGuard.set: ExceptionGuard String 0:1
I periodRegmts: Vector | multiple Floats | Float 01
' BY ALL:int| public Integer | 0:1
' defaultOutputGuar ds.set: OutputGuards String 0:1
' getLabel:string | public method | String 0:1
' trigger Regmts: Vector | multiple Floats | Float 0:1
' mrt.get: PSDLTime String 0:1
' trigger StreamsList.get: Vector | multiple Floats | Float 0:1
' timerOplist.set: String String 0:1
' impLanguage: String String 0:1
' extractString: String | public String 0:1
' finishwithinRegmts.get: Vector | multiple Floats | Float 0:1
' exceptionList.set: String String 0:1
' mrtRegmts.set: Vector | multiple Floats | Float 0:1
' ifCondition.set: String String 0:1
' mrtRegmts: Vector | multiple Floats | Float 0:1
' cloneVertexID.get:int Integer | 0:1
' getOther PropertiesList String 0:1
' metRegemts: Vector | multiple Float | Float 0:1
' getY:int| public method |Integer |0:1
' impLanguage.get: String String [0:1
' getOutputGuardList: String | public String 0:1
' isParent.set: Boolean String [0:1
' metRegemts.set: Vector | multiple Float | Float 0:1
' genericList.get:Sring String [0:1
' contains:boolean | public Boolean | 0:1
' setLabel YOffset:void | public method | String | 0:1
' keywordList: Vector | multiple Floats | Float 0:1
' UNPROTECTED:int | public Integer |0:1
' getMetXOffset:int | public method |Integer |0:1
' getMetYOffset:int | public method | Integer |0:1
' mcpRegmts: Vector | multiple Floats | Float 0:1
' mcpRegmts.set: Vector | multiple Floats | Float 0:1

230

Template Slots

Slot name | Dor:umentation| Type Cardinality | Default
trigger StreamsL.ist: Vector | multiple Floats | Float 01
formal Desc: String String 0:1
setLabel:void | public method | String | 0:1
toString: String | public method | String 0:1
trigger Regmts.set: Vector | multiple Floats | Float 0:1
inEdgesVector: vector String 0:1
cloneVertexID:int Integer | 0:1
vertexID.get:int Integer | 0:1
period.get:PSDLTime Sring 0:1
periodRegmits.set: Vector | multiple Floats | Float 0:1
mep.get: PSDLTime String 0:1
netWorkLabel.get: String String 0:1
finishwithinRegmts: Vector | multiple Floats | Float 0:1
timerList: Vector | multiple Floats | Float 0:1
netWorkLabel: String String 0:1
timingType:int Integer | 0:1
CLASSPSDLTIME
I Template Slots
Slot name | Docur 1entation | Type Cardinality |Default
timelnSecond.get: double String 0:1
getTimeUnits:int| public method Integer |0:1
min:int| public Integer |0:1
timeValue.set:int Integer |0:1
timel nSecond.set: double String 0:1
setTimeUnits:void | public method String 0:1
microsec:int| public Integer |0:1
timeValue.get:int Integer |0:1
ms:int| public Integer |0:1
timeValue:int Integer |0:1
hours:int| public Integer |0:1
sec:int| public Integer |0:1
timelnSecond: double String 0:1

231

CLASSDATATYPEOBJ

Template Slots

I Slot name | Docume itation Type Cardinality |Default
' genDecl.get: String String 0:1
' genDecl .set: String String 0:1
I ops.get: Vector | multiple Floats Float 01
' ops.set: Vector | multiple Floats Float 0:1
' impl.set: Sring String 0:1
' name: String String 0:1
' genDecl: String | public String 0:1
' keyDecs.set: String String 0:1
' impl.get: String String 0:1
' keyDecs.get: String String 0:1
' toSring: String | public String 0:1
' typelmpl: String | public String 0:1
' name.get: String String 0:1
' existOp:boolean | public Boolean |0:1
' typeName: String | public String 0:1
' keyDesc: Sring String 0:1
updateTypeOp:void String 0:1
findTypeOp: TypeOp | public String 0:1
' name.set: String String 0:1
CLASSDATATYPES
I Template Slots
I Slot name | Docurentation | Type Cardinality |Default
' existType: boolean | public Boolean |0:1
' findType: DataTypeObj | public String 0:1
' UpdateTypes:void | public String 0:1
' addType:void | public String 0:1
CLASSTYPEOP
I Template Slots
I Slot name | Documentation Type |Curdinality |Default
' opSpec: String | public String | 0:1
I opName: String | public String | 0:1

232

CLASSTIMEROP

Template Slots

I Slot name | Docurientation | Type [Cardinality |Default
' reqTrace: String | public String | 0:1
' reqTrace.set: Sring String | 0:1
guardCondition.get: String String | 0:1
timer Operation.get: string Sring |0:1
' guardCondition: String | public String | 0:1
guardCondition.set: String String | 0:1
' timer Operation.set: string String | 0:1
' timer Operation: String | public String | 0:1
' reqTrace.get: Sring String | 0:1
CLASS EXCEPTIONGUARD
CLASS OUTPUTGUARD
CLASS VERTEXPROPERTI ES
I Template Slots
I Slot name | Document ition Type Cardinality | Defaul
' periodField: JTextField | declaration String |0:1
' TO OPERATORint | public Integer |0:1
' resetTiming:void | public method String |0:1
'reﬁetTi mingPanel Com ponents:void | public method String (0:1
' keywordsButton: JButton | declaration Boolean |0:1
I dVertex: DisplayVertex | declaration String (0:1
' returnTopestParent: Vertex | public method String |0:1
' vertex.get: Vertex String [0:1
' namaField: JTextField | declaration String |0:1
' currentTimingType:int | public Integer |0:1
' TO TERMINATORint | public Integer |0:1
' metReqByButton: JButton | declaration Boolean |0:1
' initialize:void | public method String |0:1
' metField: JTextField | declaration String |0:1
' hardRB: JRadioButton | declaration Boolean |0:1
' vertex.set: Vertex String |0:1
' UNCHANGED:int | public Integer |0:1
' updateChildTiming:void | public method String |0:1
' ifCondField: TextArea | declaration String [0:1

233

Template Slots

Slot name | Document ition Type Cardinality | Defaul :
fwReqByButton: JButton | declaration Boolean |0:1
softRB: JRadioButton | declaration Boolean |0:1
trigger ReqByButton: JButton | declaration Boolean |0:1
fwUnitsCombo: JComboBox | multiple,string,int,floats| Any 0:1
vertex: Vertex String (0:1
isTimingTypeChanged: boolean | public Boolean |0:1
metUnitsCombo: JComboBox ?rg;f le, string, int, Any 0:1
tempVertex: Vertex | declaration String [0:1
formal DescButton: JButton | declaration Boolean |0:1
periodUnitsCombo: JComboBox | multiple,string,int,floats| Any 0:1
languageCombo: JComboBox gtﬁlr?gp:ﬁtfl oats Any 0:1
informal DescButton: JButton | declaration Boolean |0:1
targetVertex: Vertex | declaration String [0:1
periodRegByButton: JButton | declaration Boolean |0:1
actionPerformed:void | public method String [0:1
operator Combo: JComboBox Qﬁlr?gp:ﬁtfl oats Any 0:1
ifConditionButton: JButton | declaration Boolean |0:1
outputGuardsButton: JButton | declaration Boolean |0:1
updatePeriod:void | public method String |0:1
timer OpsButton: JButton | declaration Boolean |0:1
resetVertexType:void | public method String |0:1
isVertexTypeChanged: boolean | public Boolean |0:1
CLASS EDGEPROPERTIES
I Template Slots
Slot name |Docurentation | Type Cardinality |Default
firstEnter:boolean |declaration Boolean |0:1
ePath: EdgePath |declaration String 0:1
edge: Edge String 0:1
edgePath.get: EdgePath String 0:1
edge.set: Edge String 0:1
nameField: JTextField |declaration String 01
targetEdge: Edge |declaration String 0:1

234

Template Slots

I Slot name |Docurentation | Type Cardinality |Default
I copyEdge:void | public String 01
intValueField: JTextField | declaration String 0:1
I copyType:void |private String 01
' edge.get:Edge String 0:1
I edgePath: EdgePath String 0:1
' edgePath.set: EdgePath String 0:1
latencyField: JTextField |declaration String 0:1
CLASS PSDLBUILDERCONSTANTS
I Template Slots
I Slot name | Docum :ntation Type Cardinality |Default
' LESS THAN | public Integer | 0:1
I MIN| public Integer | 0:1
' MICROSEC | public Integer | 0:1
' INT DIGIT | public Integer | 0:1
' VERTEX | public Integer | 0:1
' ID LETTER| public Integer | 0:1
' OR | public Integer | 0:1
' DIGIT | public Integer | 0:1
' FALSE | public Integer | 0:1
I LETTER | public Integer | 0:1
' STAR | public Integer | 0:1
' CHAR TEXT | public Integer |0:1
' AXIOMS | public Integer |0:1
I AND | public Integer | 0:1
' STRING LITERAL | public Integer | 0:1
IMPLEMENTATION | public Integer |0:1
' CHARLIT | public Integer | 0:1
' OUTPUT | public Integer |0:1
' TRUE | public Integer | 0:1
' IDENTIFIER | public Integer |0:1
' TRIGGERED | public Integer | 0:1
' STR | public Integer | 0:1
' XOR | public Integer | 0:1
' DEFAULT | public Integer | 0:1

235

Template Slots

Slot name | Documi:ntation Type Cardinality |Default
TIMER | public Integer | 0:1
NOT | public Integer | 0:1
DESCRIPTION | public Integer | 0:1
KEYWORDS| public Integer | 0:1
GENERIC| public Integer | 0:1
GRAPH | public Integer | 0:1
PLUS| public Integer | 0:1
tokenlmage | public String 0:1
REM | public Integer | 0:1
AMPERCENT | public Integer | 0:1
ABS| public Integer | 0:1
EXCEPTIONS | public Integer | 0:1
IF | public Integer | 0:1
GREATER OR EQU.'% public Integer |0:1
SPECIFICATION | public Integer | 0:1
EOF | public Integer | 0:1
SEC| public Integer | 0:1
TYPE | public Integer | 0:1
NETWORKMAPPING | public Integer | 0:1
INPUT | public Integer | 0:1
ID DIGIT | public Integer | 0:1
INITIALLY | public Integer | 0:1
FACTOR | public Integer | 0:1
LESSOR EQUAL TO | public Integer |0:1
EQUALS | public Integer | 0:1
DASH | public Integer | 0:1
TEXT | public Integer | 0:1
OPERATOR | public Integer | 0:1
LITTERORDIGIT | public Integer | 0:1
MINUS| public Integer | 0:1
END | public Integer | 0:1
MS | public Integer | 0:1
STATES| public Integer | 0:1

236

Template Slots

I Slot name | Documi:ntation Type Cardinality |Default

I GREATER THAN | public Integer | 0:1

' MOD | public Integer | 0:1

' EXCEPTION | public Integer | 0:1

' INTEGER LITERAL | public Integer | 0:1

' PERIOD | public Integer | 0:1

' EDGE | public Integer | 0:1

' STAR STAR | public Integer |0:1

' DIVIDE EQUALS | public Integer | 0:1

' HOURS| public Integer | 0:1

' PROPERTY | public Integer | 0:1

CLASS PSDLBUILDER

I Template Slots

I Slot name | Doct mentation |Type Cardinality |Default

' EXCEPTION | public Integer | 0:1

' initial expression list: Vector | public method String 0:1

I REM | public Integer | 0:1

' initial expression suffix2 | public method String 0:1

I initial expression suffix1 | public method String 0:1

' id list:vector | public method String 0:1

I STRING LITERAL | public Integer | 0:1

' tokenlmage | public String 0:1

I integer literal | public method String 0:1

' IMPLEMENTATION | public Integer | 0:1
build exception guard map: Exc | public method String 0:1

' findCild: Vertex | public method String 0:1

' INT DIGIT | public Integer | 0:1

' EDGE | public Integer | 0:1

' streams:void | public method String 0:1

' check output guards:void | public method String 0:1

' networ mapping | public method String 01

' TEXT | public Integer | 0:1

' HOURS| public Integer |0:1

' INITIALLY | public Integer | 0:1

' id: String | public method String 01

237

Template Slots

Slot name | Doct mentation |Type Cardinality |Default
IF | public Integer | 0:1
EOF | public Integer | 0:1
data type:void | public method String 0:1
DESCRIPTION | public Integer | 0:1
OR| public Integer | 0:1
data flow diagram:void | public method String 0:1
buildPrototype: Vertex | public method String 01
EXCEPTIONS | public Integer | 0:1
initial expression tail | public method String 01
DEFAULT | public Integer | 0:1
label | public String 0:1
STAR | public Integer | 0:1
expression suffix2 | public method String 0:1
expression | public method String 0:1
STAR STAR | public Integer | 0:1
DIVIDE EQUALS | public Integer | 0:1
EQUALS | public Integer | 0:1
vertex:void | public method String 0:1
maptfltflrlr?erl(r)n:lzllgz public method String 0:1
operator spec:void | public method String 01
type decl: Vector | public method String 0:1
TRIGGERED | public Integer | 0:1
currentOp.set: Vertex | property String 0:1
type name| public method String 01
currentOp.get: Vertex | property String 0:1
findRoot: Vertex | public method String 01
unary op | public method String 0:1
initial expression | public method String 01
check timer ops:void | public method String 0:1
LITTERORDIGIT | public Integer | 0:1
IDENTIFIER | public Integer | 0:1
UpdateEdgeStreamType: Void | public method String 0:1
informal desc | public method String 0:1

238

Template Slots

Slot name | Doct mentation |Type Cardinality |Default
idExtension | public Integer |01
AMPERCENT | public Integer | 0:1
MICROSEC | public Integer |01
expression 1 | public method String 0:1
psdl:void | public method String 01
CHAR TEXT | public Integer | 0:1
TYPE | public Integer | 0:1
expression tail | public method String 0:1
control constraints:void | public method String 01
MIN| public Integer | 0:1
inter face:void | public method String 01
op id | public method String 0:1
op name| public method String 01
PLUS| public Integer | 0:1
initial expression 1 | public method String 01
MOD | public Integer | 0:1
extractldList | public method String 01
STATES| public Integer | 0:1
DIGIT | public Integer | 0:1
token: Token | public Symbol |0:1
NETWORKMAPPING | public Integer | 0:1
operator impl:void | public method String 0:1
check exception guards:void | public method String 0:1
NOT | public Integer |01
extractLabel:void | public method String 0:1
END | public Integer |01
XOR | public Integer | 0:1
OUTPUT | public Integer |01
FALSE | public Integer | 0:1
GRAPH | public Integer |01
GREATER OR EQUAL TO | public Integer |0:1
ID DIGIT | public Integer |01
nextToken.set: Token | property String 0:1
binary op | public method String 0:1

239

Template Slots

Slot name | Doct mentation |Type Cardinality |Default
component:void | public method String 0:1
edge:void | public method String 0:1
timer op | public method String 0:1
constraint options:void | public method String 0:1
trigger: Vector | public method String 01
findOperator: Vertex | public method String 0:1
PROPERTY | public Integer | 0:1
constraints:void | public method String 0:1
SPECIFICATION | public Integer | 0:1
CHARLIT | public Integer | 0:1
KEYWORDS | public Integer | 0:1
setVertexProperty:void | public method String 0:1
unit | public method String 01
jj nt:Token | public Symbol [0:1
INTEGER LITERAL | public Integer |0:1
MS | public Integer | 0:1
AXIOMS | public Integer | 0:1
time: PSDLTime| public method String 0:1
STR| public Integer | 0:1
LETTER | public Integer |01
expression list | public method String 0:1
TRUE | public Integer |01
id | public Integer | 0:1
MINUS| public Integer |01
GREATER THAN | public Integer | 0:1
DASH | public Integer |01
PERIOD | public Integer | 0:1
AND | public Integer |01
formal desc | public method String 0:1
OPERATOR | public Integer |01
type impl suffix:void | public method String 0:1
timers:void | public method String 0:1
findTypeDec: Edge | public method String 0:1
check exception list:void | public method String 0:1

240

Template Slots

I Slot name | Doct mentation |Type Cardinality |Default
I build output guard map: output | public method String 0:1
' setEdgeProperty:void | public method String 0:1
I type impl:void | public method String 01
' LESSOR EQUAL TO | public Integer | 0:1
' property:void | public method String 01
' psdl impl:void | public method String 0:1
' type name suffix | public method String 01
' attribute:void | public method String 0:1
I keywords: Vector | public method String 01
' INPUT | public Integer | 0:1
' FACTOR | public Integer | 0:1
' nextToken.get: Token | property String 0:1
' operator impl suffix | public method String 01
' type spec:void | public method String 0:1
' regmts trace: Vector | public method String 01
' ID LETTER | public Integer | 0:1
' empty string:void | public method String 01
' SEC| public Integer | 0:1
' expression suffix1 | public method String 0:1
' LESS THAN | public Integer |01
' ABS| public Integer | 0:1
' VERTEX | public Integer |01
' vertex type | public method String 0:1
' GENERIC| public Integer |01
' TIMER | public Integer |0:1
' operator:void | public method String 0:1
CLASS TOKEN
I Template Slots
I S.OT NAME|DOCUMIEINTATION [TYPE |CAFDINALITY |DEFAULT
special Token |public Symbol |0:1
beginColumn |public Integer |0:1
' kind | public Integer |0:1
' next: Token | public Symbol |0:1
' beginLine |public Integer |0:1

241

Template Slots

I S.OT NAME|DOCUMIENTATION [TYPE |CAFDINALITY |DEFAULT
endColumn |public Integer |0:1
' toString | public method String [0:1
I image |public String |0:1
'newToken:Token public method Symbol |0:1
' endLine |public Integer |0:1
CLASS COMPILERPROTOTYPE
CLASS TRANSLATEPROTO TYPE
CLASS SCHEDULEPROTOTY PE
CLASS EXECUTEPROTOTY PE
CLASS CAPSADAFILELIST
I Template Slots
I Slot name |Document ation Type |Cuardinality |Default
' setProtoVersion:void | public method String | 0:1
' saveAdaFile:void |public method Sring | 0:1
' setProtoName: void | public method String | 0:1
valueChanged:void | public method String | 0:1
SetAdaFiles:void | public method String | 0:1
CLASS CAPSMAINWINDOW
I Template Slots
I Slot name | Documentatior Type Cardinality | Default
I prototypeName.get String |01
' protoVersion.get String |01
schedResult: CapsResultList | schedResult:CapsResultList | String [0:1
initialize ngr?';j;’“’c’id (public Sting |0:1
' protoHome.set String |01
transList.set: CapsResultList String [0:1
' showErrorDialog: void | public method String |01
I compilList.set: CapsResultList String |01
' scheList.get: CapsResultList String |01
I adaTemplet.get:File String |01
schedulePrototype: void | public method String |01
I prototypeFile.get:File String [0:1
' compiling Boolean (0:1

242

Template Slots

Slot name | Documentatior Type Cardinality | Default
I scheduling Boolean [0:1
' adaTemplet.set:File String |01
I compilePrototype: void | public method String |01
' executePrototype: void | public method String |01
' savePrototype: void | public method Sring [0:1
' root.set: Vertex String |01
' schel.ist.set: CapsResultList String [0:1
' transResult: CapsResultList|transResult:CapsResultList | String [0:1
I schedul eOk Integer |0:1
' protoName.set String |01
' transList.get: CapsResultList String [0:1
' protoName.get String |01
I protoHome.get String [0:1
' compiResult: CapsResultList |compiResult:CapsResultList | String |0:1
' prototype.set:File String [0:1
' prototypeName.set String |01
I translateOk Integer |0:1
' trandating Boolean [0:1
' editing Integer |0:1
' prototype.get:File String [0:1
' editing:boolean Boolean |0:1
' translatePrototype: void | public method String [0:1
' root.get: Vertex String |01
' editPrototype: void | public method String [0:1
' checkSaved | public method Boolean |0:1
' compileOk Integer |0:1
' prototypeFile.set:File String |01
' compilList.get: CapsResultList String [0:1
' protoVersion.set String |01

243

CLASS CAPSRESULTLIST

Template Slots

I Slot name |Documer tation Type |Cuardinality |Default
' setResultItem: void | public method String | 0:1
' refreshResultList: void | public method String | 0:1
' addResult:void | public method String |0:1

244

APPENDIX E. CLASSHIERARCHY FOR
HIGH_LEVEL_ONTOLOGY PROJECT

Appendix E presents the High-Level Software Development Tool Ontology
(high_level_ontology) project generated by Protégé-2000. This ontology is given as a
class hierarchy of the different classes of the high level ontology accounted for in
developing the interoperability ontology. Note here that there are currently no slots
defined for this high level ontology.

245

o Tool

o Actor

Team
Stakeholders
= Developers
= Designers
= Architects

o Activity

Communication
Management
= Organization
= Sorting
= Filtering
= Synchronization
= Archiving
= Maintenance
= Credtion
= Coding
= Maodification
= Veification

o Artifacts

Document
= Reports
Statistics
Database
Feedback
Efficiency
Links Dependencies Traceability
= Security
= Child_Parent
= Risk
= Sofety
Project_Component
= Requirements

= Modd

= Use Case

= Library

= Prototype
Testing

Project: test_ontology

Class Tool
ClassActor

Class Team

246

Class Stakeholders
ClassDesigners
ClassDevelopers
Class Ar chitects
ClassActivity

Class Communication
Class M anagement
Class Organization

Class M aintenance
Class Creation

Class M odification
Class Verification

247

THIS PAGE INTENTIONALLY LEFT BLANK

248

[BADR93]

[BERN96]

[BOOCY4]

[CORAOZ]

[CRANO1]

[CZAROO]

[DAMLOZ]

[DURAQ]

[ENTROZ]

[ERIK95]

[EVALO2]

[GEYEOQ]

LIST OF REFERENCES

Badr, S, “A Modd and Algorithms for a Software Evolution Control
System,” Ph.D. Dissertation, Computer Science Department, Naval
Postgraduate School, Monterey, California, December, 1993.

Bernstein, L., “Forward: Importance of Software Prototyping”, Journal of
Systems Integration- Special Issue on Computer Aided Prototyping, 6(1),
pp. 9-14, 1996.

Booch, G., “Object-Oriented Analysis and Design” , Second Edition.
Reading, Massachusetts, Addition-Wesley, 1994.

Descriptive and Forma Ontology, Raul Corazzon,
[http://www.formal ontology.it/], 05 October 2002.

Cranefield, S., Haustein, S, and Purvis, M. K., “UML -Based Ontology
Modelling for Software Agents,”
[http://citeseer.nj.nec.com/cranefield0lumlbased.html], July 2001.

Czarnecki, K. and Eisenecker, U., Generative Programming Methods,
Tools, and Applications, Addison-Wedey, p. 78, 2000.

“DARPA Agent Markup Language’, [http://www.daml.org/], 21
November 2002.

Duranlioglu, 1., “Implementation of a Portable PSDL Editor for the
Heterogeneous Systems Integrator,” Master’'s Thesis, Naval Postgraduate
School, Monterey, Cdifornia, March 1999.

“The Enterprise Ontology,”
[http://www.aiai .ed.ac.uk/~entprise/enterprise/ontol ogy.html], 23 April
2002.

Eriksson, H., Tu, S. W., Shahar, Y., and Musen, M. A. (1995), “Ontology -
Based Configuration of Problem-Solving Methods and Generation of
Knowledge-Acquisition Tools. Application of PROTEGE -1 to Potocol-
Bsed Dcision Spport, Artificia Intelligence in Medicine, [http://www-
smi.stanford.edu/pubs/SMI Reports/SMI -94-0520.pdf], 7:257-289, 1995,

“Evduation of Rational RequisitePro as a General Artifact Manager,”
[http://research.cs.tamu.edu/L SR/gaydos Icam.html], 26 October 2002.

Geyer, Lars, “Feature Modding Using Design Spaces, Proceedings of 1st
German Workshop on Product Line Software Engineering, Kaiserdautern,
Germany, November 2000.

249

[GRUBO2]

[GRUB95]

[HARN99(]

[IBRA9S6]

[INTROZ]

[KANGOO]

[LEFFO0]

[LENA9O]

[LENCO1]

[LUQIOZ]

[LUQISS]

[LUQIOO]

Tom Gruber, What is an Ontology? [http://www-
kd.stanford.edu/kst/what -is-an-ontol ogy.html], 05 October 2002.

Gruber, T. R., “Toward Pinciples for the Design of Ontologies Used for
Knowledge Sharing,” Int. J. Human-Computer Studies, 43, pp. 907-928,
1995.

Harn, M., “Computer -Aided Software Evolution Based on Inferred
Dependencies,” Ph.D. Dissertation, Computer Science Department, Naval
Postgraduate School, Monterey, California, 1999.

Ibrahim, O. M., “A Mode and Decision Support M echanism for Software
Requirements Engineering,” Ph.D. Dissertation, Computer Science
Department, Nava Postgraduate School, Monterey, California, 1996.

Introduction to OMG's Unified Modeling Language™ (UML ™) Object
Management Group (OMG),

[http://www.omg.org/gettingstarted/what_is uml.htm], 30 December
2002.

Kang, K., Cohen, S., Nowak, W., and Peterson, S., “Feature-Oriented
Domain Anaysis (FODA) Feasibility Study,” Technical Report,
CMU/SEI-90-TR-21, Software Engineering Institute, Camegie Mellon
University, Pittsburgh, Pennsylvania, November 1990.

Leffingwell, D. and Widrig, D., Managing Software Requirements. A
Unified Approach, Addison-Wedey, 2000.

Lenat, D. B. and Guha, R. V., Building Large Knowledge-Based Systems,
Reading, Addison-Wedey, 1990.

Lenci, A., “Building an Ontology for the Lexicon: Semantic Types and
Word Meaning,” [Jensen and Skadhauge (eds.) 01], pp. 103-120,

[http://www.ontoquery.dk/publications/docs/Building an Ontology.doc],
27 November 2002.

Lugi, Berzins, V., Shing, M., Nada, N. and Eagle, C., Computer Aided
Prototyping System (CAPS) for Heterogeneous Systems Devel opment and
Integration*,

[http://www.dodccrp.org/2000CCRTS/cd/html/pdf papers/Track 2/129.p
df], 26 October 2002.

Lugi and Ketabchi, M., “A Computer-Aided Prototyping System”, |EEE
Software, 5(2), pp. 66-72, 1988.

Ludgi, “A Graph Model for Software Evolution,” 1EEE Trans. On Software
Engineering, Val. 16, No. 8, pp. 917-927, August 1990.

250

[LUQI9Y]

[LUQI9%]

[MCDOO01]

[MUSE954]

[MUSEQS]

[OVEROZ]

[PROTO2Z]
[PUETO2]

[PUETO3]

[RATIOZ]
[SOENOZ]

[SOFTO2]
[SOWAOO]

Lugi, “Computer -Aided Software Prototyping”, IEEE Computer, pp. 111-
112, September 1991.

Ludi, “ System Engineering and Computer -Aided Prototyping”, Journal of
Systems Integration - Special 1ssue on Computer Aided Prototyping, 6(1),
pp. 15-17, 1996.

McDonald 111, A., “The Design and Development of a Web-Interface for
the Software Engineering Automation System”, Master's Thes's, Naval
Postgraduate School, Monterey, California, September 2001.

Musen, M. A., Gennari, J. H., Eriksson, H., Tu, S. W., and Puerta, A. R.
(1995a), “PROTEGE-11: Computer Support for Development of Intelligent
systems from libraries of components, “in: Proceedings of MEDINFO 95,
Eighth World Congress on Medical Informatics, pp. 766-770, Vancouver
British Columbia, 1995.

Musen, M. A., [http://citeseer.nj.nec.com/context/1016887/352445], 1998;
37(4-5): 540-550.

“Overview of Dharma Guideline Model,” [http://smi-
web.stanford.edu/projects/eon/DharmalserGuide/overview.html], 20
October 2002.

Protégé, [http://protege.stanford.edu], 20 October 2002.

Puett, J., “ Holistic Framework for Establishing Interoperability of
Heterogeneous Software Development Tools and Models,” Proc. 24" Intl.
Conf. on Software Engr., Orlando Florida, May 2002.

Puett, J., “ Holigtic Framework for Establishing Interoperability of
Heterogeneous Software Development Tools,” Draft PhD Dessertation,
Computer Science Department, Nava Postgraduate School, Monterey
Cadlifornia, 2003.

Rational RequisitePro User’s Guide, Version 2002.05.00.

“Software Engineering,” [http://www.daml.org/ontologies/9], 21
November 2002.

“Software,” [http://www.daml.org/ontologies/151], 21 November 2002.

Sowa, J. F., “Knowledge Representation, Logical, Philosophical, and
Computational Foundations,” Publisher Brooks/Cole, 2000.

251

[UNDEO2]

[USCH96]

[USCH98]

[USER02]

[YOUNO1]

[YOUNOZ]

“Understanding and Implementing Stakeholder Needs: the Integration of
Rationa ClearQuest and Rational RequisitePro,” A Rationa Software
Corporation White Paper,

[http://mww.rational .com/media/whitepapersCQ RegPro.pdf |, 26
October 2002.

Uschold, M. and Gruninger, M., “Ontologies. Principles, Methods and
Applications,” Knowledge Engineering Review, Vol. 11, No. 2, June 1996.

Uschold, M., King, M., Mordee, S., and Zorgios, Y., “The Entreprise
Ontology,” Knowledge Engineering Review, Vol. 13, Specia Issue on
Putting Ontologies to Use, 1998.

User Interface Manua (Section 2), p. 2,
[http://wwweaps.cs.nps.navy.mil/Manuals/User Interface/section 2.html],
26 October 2002.

Young, P., Ge Jun, Berzins, V. and Lugi, “Using an Object Oriented
Model for Resolving Representational Differences Between
Heterogeneous Systems,” Proceedings of the Monterey Workshop 2001,
June 2001.

Y oung, P., “Heterogeneous Software System Interoperability Through
Computer-Aided Resolution of Modeling Differences,” Ph.D.
Dissertation, Computer Science Department, Naval Postgraduate School,
Monterey, Cdifornia, June 2002.

252

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvair, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Director, Personnel and Training
Tunisian Ministry of Defense
Boulevard Bab Mnara

1008 Tunis, Tunisia

Embassy of Tunisia
Office of the Military Attaché
Washington, D.C.

Professor Man-Tak Shing
Naval Postgraduate School
Monterey, California

LTC Joseph Puett
Naval Postgraduate School
Monterey, California

Professor Peter Denning

Naval Postgraduate School
Monterey, California

253

